

1)	M 2	2-131	A. Chan	2-588	3-4110	alicec
2)	M 3	2-131	A. Chan	2-588	3-4110	alicec
3)	M 3	2-132	D. Testa	2-586	3-4102	damiano
4)	T 10	2-132	C.I. Kim	2-273	3-4380	ikim
5)	T 11	2-132	C.I. Kim	2-273	3-4380	ikim
6)	T 12	2-132	W.L. Gan	2-101	3-3299	wlgan
7)	Τ1	2-131	C.I. Kim	2-273	3-4380	ikim
8)	Τ1	2-132	W.L. Gan	2-101	3-3299	wlgan
9)	T 2	2-132	W.L. Gan	2-101	3-3299	wlgan

1 (26 pts.) Suppose A is reduced by the usual row operations to

$$R = \left[\begin{array}{rrrr} 1 & 4 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

Find the complete solution (if a solution exists) to this system involving the original A:

Ax = sum of the columns of A.

- 2 (18 pts.) Suppose the 4 by 4 matrices A and B have the same column space. They may not have the same columns!
 - (a) Are they sure to have the same number of pivots? YES NO WHY?
 - (b) Are they sure to have the same nullspace? YES NO WHY?
 - (c) If A is invertible, are you sure that B is invertible? YES NO WHY?

3 (40 pts.) (a) Reduce A to an upper triangular matrix U and carry out the same elimination steps on the right side b:

$$\begin{bmatrix} A & b \end{bmatrix} = \begin{bmatrix} 3 & 3 & 1 & b_1 \\ 3 & 5 & 1 & b_2 \\ -3 & 3 & 2 & b_3 \end{bmatrix} \longrightarrow \begin{bmatrix} U & c \end{bmatrix}$$

Factor the 3 by 3 matrix A into LU = (lower triangular)(upper triangular).

- (b) If you change the last entry in A from 2 to _____ (what number gives A_{new} ?) then A_{new} becomes singular. Describe its column space exactly.
- (c) In that singular case from part (b), what condition(s) on b_1, b_2, b_3 allow the system $A_{new}x = b$ to be solved?

-

-

(d) Write down the complete solution to
$$A_{\text{new}}x = \begin{bmatrix} 3\\ 3\\ -3 \end{bmatrix}$$
 (the first column).

- 4 (16 pts.) Suppose the columns of a 7 by 4 matrix A are linearly independent.
 - (a) After row operations reduce A to U or R, how many rows will be all zero (or is it impossible to tell)?
 - (b) What is the row space of A? Explain why this equation will surely be solvable:

$$A^{\mathrm{T}}y = \begin{bmatrix} 1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

•