18.06 Professor Strang Quiz 1 February 28, 2005

Grading
 Your PRINTED name is:
 Please circle your recitation:

1) M 2 2-131 A. Chan 2-588 3-4110 alicec
2) M $3 \quad 2-131$ A. Chan 2-588 3-4110 alicec
3) M 3 2-132 D. Testa 2-586 3-4102 damiano
4) T 10 2-132 C.I. Kim 2-273 3-4380 ikim
5) T 11 2-132 C.I. Kim 2-273 3-4380 ikim
6) T 12 2-132 W.L. Gan 2-101 3-3299 wlgan
7) T 1 2-131 C.I. Kim 2-273 3-4380 ikim
8) T 1 2-132 W.L. Gan 2-101 3-3299 wlgan
9) T 2 2-132 W.L. Gan 2-101 3-3299 wlgan

1 (26 pts.) Suppose A is reduced by the usual row operations to

$$
R=\left[\begin{array}{llll}
1 & 4 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Find the complete solution (if a solution exists) to this system involving the original A :

$$
A x=\text { sum of the columns of } A \text {. }
$$

2 (18 pts.) Suppose the 4 by 4 matrices A and B have the same column space. They may not have the same columns!
(a) Are they sure to have the same number of pivots? YES NO WHY?
(b) Are they sure to have the same nullspace? YES NO WHY?
(c) If A is invertible, are you sure that B is invertible? YES NO WHY?

3 (40 pts.) (a) Reduce A to an upper triangular matrix U and carry out the same elimination steps on the right side b :

$$
\left[\begin{array}{ll}
A & b
\end{array}\right]=\left[\begin{array}{rrrr}
3 & 3 & 1 & b_{1} \\
3 & 5 & 1 & b_{2} \\
-3 & 3 & 2 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{ll}
U & c
\end{array}\right]
$$

Factor the 3 by 3 matrix A into $L U=$ (lower triangular)(upper triangular).
(b) If you change the last entry in A from 2 to \qquad (what number gives $A_{\text {new }}$?) then $A_{\text {new }}$ becomes singular. Describe its column space exactly.
(c) In that singular case from part (b), what condition(s) on b_{1}, b_{2}, b_{3} allow the system $A_{\text {new }} x=b$ to be solved ?
(d) Write down the complete solution to $A_{\text {new }} x=\left[\begin{array}{r}3 \\ 3 \\ -3\end{array}\right]$ (the first column).

4 ($\mathbf{1 6}$ pts.) Suppose the columns of a 7 by 4 matrix A are linearly independent.
(a) After row operations reduce A to U or R, how many rows will be all zero (or is it impossible to tell)?
(b) What is the row space of A ? Explain why this equation will surely be solvable:

$$
A^{\mathrm{T}} y=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

