18.06 - Spring 2005 - Problem Set 5

This problem set is due Wednesday (March 16th), at 4 PM , in 2-106. Make sure to PRINT your name, recitation number and instructor on your homework!

Please staple your MATLAB solutions as first pages of your homework.
Lecture 15:

- Read: book section 4.3.
- Work: book section 4.3 (exercises 4, 9, 12, 26 and 27)

Lecture 16:

- Read: book section 4.4.
- Work: book section 4.4 (exercises $3,7,15,18,24$ and 36).

Lecture 17:

- Read: book section 5.1.
- Work: book section 5.1 (exercises 3, 12, 15, 28 and 34).

Challenge Problem with MATLAB

The command a=ones ($\mathrm{n}, 1$) produces an $n \times 1$ matrix of 1 's.
The command $l=(1: n$)' produces the vector $(1,2, \ldots, n)$, transposed to a column by '.
The command $\mathbf{s}=1 . \wedge 2$ produces the vector $\left(1^{2}, 2^{2}, \ldots, n^{2}\right)^{T}$, because the dot means "a component at a time."
This problem looks for the line $y=c+d t$ closest to the parabola $y=t^{2}$ on the interval $t=0$ to $t=1$.

1. Find the best line by calculus, not MATLAB. Choose c and d to minimize

$$
E(c, d):=\int_{0}^{1}\left(c+d t-t^{2}\right)^{2} d t
$$

2. With $n=10$, choose C and D to give the line $y=C+D t$ that is closest to t^{2} at the points $t=\frac{1}{10}, \frac{2}{10}, \ldots, 1$ (in the vector $1 / 10$). The unsolvable equations $A X=b$ (use least squares) are

$$
\left[\begin{array}{ll}
a & l / n
\end{array}\right]\left[\begin{array}{l}
C \\
D
\end{array}\right]=s / n^{\wedge} 2
$$

Find the best C and D and the errors $c-C$ and $d-D$.
3. Repeat for $n=20$. (Notice how $1 / n$ and $s / n^{\wedge} 2$ end at 1 , like the calculus problem.)
Are the differences $c-C$ and $d-D$ smaller for $n=20$ and by approximately what factor?

