18.06 - Spring 2005 - Problem Set 4

This problem set is due Wednesday (March 9th), at 4 PM , at 2-106. Make sure to PRINT your name, recitation number and instructor on your homework!

Please staple your MATLAB solutions as first pages of your homework.
Lecture 11:

- Read: book section 3.6.
- Work: book section 3.6 (exercises 4, 25, 26 and 29)

Lecture 12:

- Read: book section 8.2.
- Work: book section 8.2 (exercises 11 and 17).

Lecture 13:

- Read: book section 4.1.
- Work: book section 4.1 (exercises 6, 7, 10, 26, 28 and 30).

Lecture 14:

- Read: book section 4.2.
- Work: book section 4.2 (exercises $4,13,17,19,27$ and 29).

MATLAB Problems

Construct the following 6×6 matrices:

- $K=$ toeplitz $([2,-1, \operatorname{zeros}(1,4)])$
- $T=K ; \mathrm{T}(1,1)=1$
- $C=$ toeplitz $([2,-1, \operatorname{zeros}(1,3),-1])$

1. C is singular: Explain why. If A is the incidence matrix (Sec. 8.2) for a loop of 6 nodes and edges (a hexagon) verify by hand or MATLAB that $C=A^{T} A$.
2. The matrix T has a simple inverse $\operatorname{inv}(T)$. Find a formula for the i, j entry of T^{-1} when T is $n \times n$.
3. The matrix $K-T$ is certainly a rank one matrix. Compute $T^{-1}-K^{-1}$ (6×6) and express it in the rank one form $u v^{T}$. This is an important example of Problem 2.5.43.
