18.06 - Spring 2005 - Problem Set 2

This problem set on lectures $4-6$ is due Wednesday (February 16th), at 4 PM, at 2-106. Make sure to include your name and recitation number in your homework! The numbers of the sections and exercises refer to " Introduction to Linear Algebra, 3rd Edition, by Gilbert Strang."

Please staple your solution as first page of your homework. Remember to PRINT your name, Recitation number and Instructor name.

Lecture 4:

- Read: book sections 2.5 and 2.6.
- Work: book section 2.5 (exercises $8,23,30,32$ and 35) and 2.6 (6, 10,13 , and 20).

Lecture 5:

- Read: book section 2.7.
- Work: book section 2.7 (exercises 4, 12, 13, 17 and 40).

Lecture 6:

- Read: book section 3.1.
- Work: book section 3.1 (exercises 5, 10, 18, 23 and 24).

Challenge Problem

The inverse (add with $E_{i j}^{-1}$ instead of subtract with $E_{i j}$) of an elementary elimination matrix is the identity with $+\ell_{i j}$ added in the i, j position. The magic of $A=L U$ is that multiplying those $E_{i j}^{-1}$ in reverse order puts every $\ell_{i j}$ unchanged into L.

The problem is to prove this key Lemma:
Suppose the matrix M has the ℓ 's filled in up to but not including (i, j), and N is the next matrix with that next $\overline{\ell_{i j}}$ filled in. Both have 1's down the main diagonal, and columns before j are all filled in. PROVE THAT $M E_{i j}^{-1}=N$.

Then every $E_{i j}^{-1}$ fills in its $\ell_{i j}$ and the product of them all is the correct lower triangular L. Notice that $E_{i j}^{-1}$ is multiplying on the right-what does that do to the columns of a matrix?

