18.06 - Spring 2005 - Problem Set 1

February 10, 2005

This problem set on lectures $1-3$ is due Wednesday (February 9th), at 4 PM, in 2-106. Make sure to include your name and recitation number in your homework! The numbers of the sections and exercises refer to "Introduction to Linear Algebra, 3rd Edition, by Gilbert Strang."

Please staple your solution as first page of your homework. Remember to PRINT your name, Recitation number and Instructor name.

Lecture 1:

- Read: book sections 1.1 to 2.1.
- Work: book section 1.1 (exercise 28), 1.2 (exercise 29 and 31), and 2.1 (exercises 18 and 19).

Lecture 2:

- Read: book sections 2.2 and 2.3.
- Work: book section 2.2 (exercises 5, 7, 15, 19 and 26), and 2.3 (exercises 3, 11, 19 and 27).

Lecture 3:

- Read: book sections 2.4 and 2.5.
- Work: book section 2.4 (exercises 2, 24, 33).

Challenge Problem for 3 by 3 systems $A x=b$
Success would be 3 columns of A whose combinations give every vector \mathbf{b}, which matches with 3 planes in the row picture that intersect at one point (the unique solution \mathbf{x}). Give numerical examples of these two types of failure:

- 3 columns lie on the same line.

The 3 planes in the row picture are ...?
3 planes are parallel
Then if \mathbf{b} happens to lie on that line of columns, the 3 planes meet in a ...?

- 3 columns in the same plane, but no two on the same line.

Then 3 planes do what? Show by a sketch. Which b's allow $A x=b$ to be solved?

