Exam 3, Friday May 4th, 2005

Solutions

Question 1. (a) The characteristic polynomial of the matrix A is

$$
-\lambda^{3}+\frac{3}{2} \lambda^{2}-\frac{9}{16} \lambda+\frac{1}{16}=-(\lambda-1)\left(\lambda-\frac{1}{4}\right)^{2}
$$

and thus the eigenvalues of A are 1 with multiplicity one and $\frac{1}{4}$ with multiplicity two. Clearly the eigenvectors with eigenvalue 1 are the non-zero multiples of the vector $(1,1,1)^{T}$. The remaining eigenvectors are all non-zero vector of the orthogonal complement of $(1,1,1)^{T}$: they are the vectors

$$
\left(\begin{array}{c}
a \\
b \\
-a-b
\end{array}\right), \quad \text { with }(a, b) \neq(0,0)
$$

and an orthogonal basis for this vector space is

$$
\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)
$$

(b) For the matrix S we may choose the orthogonal matrix

$$
S=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}}
\end{array}\right)
$$

and the matrix Λ is then the diagonal matrix with entries $1, \frac{1}{4}$, and $\frac{1}{4}$ along the diagonal.
We have

$$
\lim _{k \rightarrow \infty} A^{k}=S\left(\lim _{k \rightarrow \infty} \Lambda^{k}\right) S^{-1}=S\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) S^{T}
$$

and therefore

$$
\lim _{k \rightarrow \infty} A^{k}=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & 0 & 0 \\
\frac{1}{\sqrt{3}} & 0 & 0
\end{array}\right) S^{T}=\frac{1}{3}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

(c) Any $r<\frac{1}{4}$ is such that $A-r I$ is positive definite. Since we want r to be positive, we may choose $r=\frac{1}{8}$.
Any $\frac{1}{4}<s<1$ is such that $A-s I$ is indefinite. We may choose $s=\frac{1}{2}$.
Any $1<t$ is such that $A-t I$ is negative definite. We may choose $t=2$.
(d) The singular values of B are $1, \frac{1}{2}$ and $\frac{1}{2}$.

Question 2. The trace of A equals the sum of the eigenvalues, which is zero. We deduce that the entry in the second row and second column is $-a$. Similarly, the determinant of A equals the product of the eigenvalues, which is -1 . We deduce that the entry in the second row and first column is $1-a^{2}$. Thus we have

$$
A=\left(\begin{array}{cc}
a & 1 \\
1-a^{2} & -a
\end{array}\right)
$$

(b) The matrix A has two independent eigenvectors since it has two distinct eigenvalues.
(c) The only choices of a giving orthogonal eigenvectors are the ones for which A is symmetric. This implies $a=0$. If $a \neq 0$, then A does not have orthogonal eigenvectors.
(d) For any choice of a the matrix A has exactly one eigenvalue 1 and exactly one eigenvalue -1 . Thus the Jordan canonical form of A is always

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

independently of what a is.
Question 3. (a) The general solution to the differential equation $\frac{d u}{d t}=A u$ is

$$
u(t)=c_{1} e^{\lambda_{1} t} x_{1}+c_{2} e^{\lambda_{2} t} x_{2}+c_{3} e^{\lambda_{3} t} x_{3}
$$

where c_{1}, c_{2}, c_{3} are arbitrary constants.
(b) Since the vectors x_{1}, x_{2}, x_{3} are independent, they form a basis for \mathbb{R}^{3}. It follows that we may write any vector $u_{0} \in \mathbb{R}^{3}$ as a linear combination of these vectors: $u_{0}=a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$. Repeatedly applying the matrix A we obtain

$$
u_{k}=A^{k} u_{0}=\lambda_{1}^{k} a_{1} x_{1}+\lambda_{2}^{k} a_{2} x_{2}+\lambda_{3}^{k} a_{3} x_{3}
$$

If we want the limit as k goes to infinity of the vectors u_{k} to be zero, then all the limits $\lim \lambda_{i}^{k}$ must be zero. It follows that we necessarily have $-1<\lambda_{i}<1$, for all i 's.

