Exam 2, Friday April 1st, 2005

Solutions

Question 1. The vector a_{1} can be any non-zero positive multiple of q_{1}. The vector a_{2} can be any multiple of q_{1} plus any non-zero positive multiple of q_{2} :

$$
\begin{aligned}
& a_{1}=c q_{1} \\
& a_{2}=c_{1} q_{1}+c_{2} q_{2} \quad, \text { with } c, c_{1}>0 .
\end{aligned}
$$

Question 2. We want to find the least squares solution to the equation

$$
a x=b
$$

and we know that it is enough to multiply both sides by a^{T} and solve the resulting system:

$$
a^{T} a x=a^{T} b \quad \Longrightarrow \quad x=\frac{a \cdot b}{a \cdot a}
$$

Question 3. The vectors $(-1,1,0)^{T}$ and $(-1,0,1)^{T}$ form a basis for the subspace $x+$ $y+z=0$. Let A be the matrix whose columns are the two vectors found above. Thus the projection matrix P onto the subspace $x+y+z=0$ is

$$
\begin{aligned}
P & =A\left(A^{T} A\right)^{-1} A^{T}=\left(\begin{array}{cc}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)^{-1}\left(\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)= \\
& =\left(\begin{array}{cc}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right) \frac{1}{3}\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right)\left(\begin{array}{lll}
-1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)= \\
& =\frac{1}{3}\left(\begin{array}{cc}
-1 & -1 \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ccc}
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)= \\
& =\frac{1}{3}\left(\begin{array}{ccc}
2 & -1 & -1 \\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right)
\end{aligned}
$$

The projection of $(1,2,6)^{T}$ onto the plane $x+y+z=0$ is thus simply

$$
p=P\left(\begin{array}{l}
1 \\
2 \\
6
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
3
\end{array}\right)
$$

Question 4. Looking at the first row of A we deduce that

$$
\operatorname{det} A=\operatorname{det}\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 3 \\
1 & 3 & 9
\end{array}\right)=9-6=3
$$

Of course, $\operatorname{det}\left(A^{-1}\right)=\frac{1}{3}$. Finally

$$
\left(A^{-1}\right)_{12}=\frac{-C_{21}}{\operatorname{det} A}=\frac{-1}{3} \operatorname{det}\left(\begin{array}{lll}
0 & 1 & 0 \\
2 & 1 & 3 \\
3 & 1 & 9
\end{array}\right)=\frac{-(-9)}{3}=3
$$

Question 5. (a) The column space of $Q Q^{T}$ is at most two dimensional, since the matrix $Q Q^{T}$ is 4×4, it cannot have rank four. Thus $\operatorname{det} Q Q^{T}=0$.

Similarly, the matrix [$Q Q$] has dependent columns, and therefore $\operatorname{det}[Q Q]=0$. (b) Using the projection formula,

$$
p=Q\left(Q^{T} Q\right)^{-1} Q^{T} b=Q I Q^{T} b=Q Q^{T} b
$$

(c) The error vector $e=b-p$ is contained in the left null-space of Q, the nullspace of Q^{T}. To check this, we compute

$$
Q^{T} e=Q^{T}\left(b-Q Q^{T} b\right)=Q^{T} b-Q^{T} Q Q^{T} b=Q^{T} b-I Q^{T} b=0
$$

Question 6. The product $P_{2} P_{1}$ is projection onto the column space of P_{1}, followed by the projection onto the column space of P_{2}. Since the column space of P_{2} contains the column space of P_{1}, the second projection does not change the vectors anymore. Thus

$$
P_{2} P_{1}=P_{1}=\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right)\left(\left(\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right)\right)^{-1}\left(\begin{array}{llll}
1 & 2 & 0 & 1
\end{array}\right)=\frac{1}{6}\left(\begin{array}{llll}
1 & 2 & 0 & 1 \\
2 & 4 & 0 & 2 \\
0 & 0 & 0 & 0 \\
1 & 2 & 0 & 1
\end{array}\right)
$$

