18.06 - Spring 2005 - Problem Set 4

Solution to the MATLAB Problems

1. We have

$$
\begin{aligned}
K & =\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \\
T & =\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & -1 & 2
\end{array}\right) \\
C & =\left(\begin{array}{cccccc}
2 & -1 & 0 & 0 & 0 & -1 \\
-1 & 2 & -1 & 0 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & 0 & 0 & -1 & 2 & -1 \\
-1 & 0 & 0 & 0 & -1 & 2
\end{array}\right)
\end{aligned}
$$

The matrix C is singular, since the sum of the columns of C is the zero vector:

$$
C\left(\begin{array}{l}
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The adjacency matrix of a hexagon is the matrix

$$
A=\left(\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 \\
-1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

An easy computation shows that $A^{T} A=C$.
2. Using MATLAB we find

$$
\operatorname{inv}(T)=\left(\begin{array}{cccccc}
6 & 5 & 4 & 3 & 2 & 1 \\
5 & 5 & 4 & 3 & 2 & 1 \\
4 & 4 & 4 & 3 & 2 & 1 \\
3 & 3 & 3 & 3 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

and we may guess that the formula for (i, j)-entry of the $n \times n$ matrix T^{-1} is

$$
\left(T^{-1}\right)_{i j}=n+1-\max \{i, j\}
$$

To check that this really is the inverse of T, we compute $T^{-1} T$. The $j-$ th column of this product, for $1<j<n$, is equal to

$$
2\left(\begin{array}{c}
j \\
\vdots \\
j \\
j \\
j-1 \\
j-2 \\
\vdots \\
1
\end{array}\right)-\left(\begin{array}{c}
j+1 \\
\vdots \\
j+1 \\
j \\
j-1 \\
j-2 \\
\vdots \\
1
\end{array}\right)-\left(\begin{array}{c}
j-1 \\
\vdots \\
j-1 \\
j-1 \\
j-1 \\
j-2 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

where the 1 is in the j-th row. The first column of the product is

$$
\left(\begin{array}{c}
n \\
n-1 \\
n-2 \\
\vdots \\
1
\end{array}\right)-\left(\begin{array}{c}
n-1 \\
n-1 \\
n-2 \\
\vdots \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

and the last one is

$$
2\left(\begin{array}{c}
1 \\
1 \\
\vdots \\
1 \\
1
\end{array}\right)-\left(\begin{array}{c}
2 \\
2 \\
\vdots \\
2 \\
1
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

Thus indeed the guess above is correct.
3. Using Problem 43 of $\S 2.5$ part 2 with $M=K$ and $A=T$, and the fact that

$$
K=T-\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

we find

$$
\begin{aligned}
K^{-1} & =T^{-1}+\left(1-\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) T^{-1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\right)^{-1} T^{-1}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) T^{-1}= \\
& =T^{-1}+\left(1-\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
6 \\
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)\right)^{-1}\left(\begin{array}{l}
6 \\
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) T^{-1}= \\
& =T^{-1}+\frac{1}{7}\left(\begin{array}{l}
6 \\
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)\left(\begin{array}{llllll}
-1 & 0 & 0 & 0 & 0 & 0
\end{array}\right) T^{-1}= \\
& =T^{-1}-\frac{1}{7}\left(\begin{array}{l}
6 \\
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)\left(\begin{array}{llllll}
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)
\end{aligned}
$$

and thus

$$
T^{-1}-K^{-1}=\frac{1}{7}\left(\begin{array}{l}
6 \\
5 \\
4 \\
3 \\
2 \\
1
\end{array}\right)\left(\begin{array}{llllll}
6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)
$$

