18.06 - Spring 2005 - Problem Set 8

Solution to the Challenge Problem

Challenge Problem: Consider the 3×3 matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
1 & d & e \\
0 & 1 & f
\end{array}\right)
$$

Determine the entries a, b, c, d, e, f so that:

- the top left 1×1 block is a matrix with eigenvalue 2 ;
- the top left 2×2 block is a matrix with eigenvalues 3 and -3 ;
- the top left 3×3 block is a matrix with eigenvalues 0,1 and -2 .

Solution. Let A_{i} denote the top left $i \times i$ block of A. The matrix A_{1} is the matrix (a). Since a is the only eigenvalue of this matrix, we conclude that $a=2$.

We now move on to determining the entries of the matrix A_{2}, the top left 2×2 block of A :

$$
A_{2}=\left(\begin{array}{ll}
2 & b \\
1 & d
\end{array}\right)
$$

Since the sum of the eigenvalues of A_{2} is 0 by hypothesis, and it is also equal to the trace of A_{2}, we obtain that $2+d=0$, or $d=-2$. Moreover, the product of the eigenvalues of A_{2} is -9 by hypothesis, and it is equal to the determinant of A_{2}. Thus we have

$$
-9=2 d-b=-4-b
$$

and we deduce that $b=5$ and therefore

$$
A_{2}=\left(\begin{array}{cc}
2 & 5 \\
1 & -2
\end{array}\right)
$$

Finally, consider $A=A_{3}$. Again, the sum of the eigenvalues of A is -1 and it is also equal to the trace of A. We deduce that $f=-1$. We still need to determine the entries c and e of A, and we have

$$
A=\left(\begin{array}{ccc}
2 & 5 & c \\
1 & -2 & e \\
0 & 1 & -1
\end{array}\right)
$$

The characteristic polynomial of this matrix is

$$
-\lambda^{3}-\lambda^{2}+(e+9) \lambda+c-2 e+9
$$

We know that the roots of this polynomial must be 0,1 and -2 . Setting $\lambda=0$ and $\lambda=1$ we obtain

$$
\begin{aligned}
c-2 e+9 & =0 \\
-1-1+(e+9)+c-2 e+9 & =0
\end{aligned}
$$

which are equivalent to

$$
\begin{aligned}
c-2 e & =-9 \\
c-e & =-16
\end{aligned}
$$

Thus $c=-7$ and $e=9$ and we conclude

$$
A=\left(\begin{array}{ccc}
2 & 5 & -7 \\
1 & -2 & -9 \\
0 & 1 & -1
\end{array}\right)
$$

