18.06	.06 Professor Strang		Quiz 3	May 5, 2004	
		SOLUTIONS		Grading	
Your	name is:		S	1	
				2	
				3	
Pleas					

1)	M2	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
2)	M3	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
3)	M3	2-132	A. Oblomkov	2-092	3-6228	oblomkov
4)	T11	2-132	A. Oblomkov	2-092	3-6228	oblomkov
5)	T12	2-132	I. Pak	2-390	3-4390	pak
6)	T1	2-131	B. Santoro	2-085	2-1192	bsantoro
7)	T1	2-132	I. Pak	2-390	3-4390	pak
8)	T2	2-132	B. Santoro	2-085	2-1192	bsantoro
9)	T2	2-131	J. Santos	2-180	3-4350	jsantos

1 (40 pts.) This question deals with the following symmetric matrix A:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

One eigenvalue is $\lambda = 1$ with the line of eigenvectors x = (c, c, 0).

- (a) That line is the nullspace of what matrix constructed from A?
- (b) Find (in any way) the other two eigenvalues of A and two corresponding eigenvectors.
- (c) The diagonalization $A = S\Lambda S^{-1}$ has a specially nice form because $A = A^{T}$. Write all entries in the three matrices in the nice symmetric diagonalization of A.
- (d) Give a reason why e^A is or is not a symmetric positive definite matrix.

Solution:

- (a) The eigenvectors for $\lambda = 1$ make up the nullspace of A I.
- (b) First method: A has trace 2 and determinant -2. So the two eigenvalues after $\lambda_1 = 1$ will add to 1 and multiply to -2. Those are $\lambda_2 = 2$ and $\lambda_3 = -1$.

Second method: Compute $\det(A - \lambda I) = -\lambda^3 + 2\lambda^2 + \lambda - 2$ and find the roots 1, 2, -1: (divide by $\lambda - 1$ to get $\lambda^2 - \lambda - 2 = 0$ for the roots λ_2 and λ_3).

Eigenvectors:
$$\lambda_2 = 2$$
 has $x_2 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, $\lambda_3 = -1$ has $x_3 = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$.

(c) Every symmetric matrix has the nice form $A = Q\Lambda Q^{T}$ with orthogonal matrix Q. The columns of Q are orthonormal eigenvectors. (They could be multiplied by -1.)

$$Q = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{3} & 1/\sqrt{6} \\ 1/\sqrt{2} & -1/\sqrt{3} & -1/\sqrt{6} \\ 0 & 1/\sqrt{3} & -2/\sqrt{6} \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 1 & & \\ & 2 & \\ & & -1 \end{bmatrix}.$$

(d) e^A is symmetric and all its eigenvalues e^{λ} are positive—so e^A is positive definite.

2 (30 pts.) (a) Find the *eigenvalues* and *eigenvectors* (depending on c) of

$$A = \left[\begin{array}{cc} .3 & c \\ .7 & 1-c \end{array} \right]$$

For which value of c is the matrix A not diagonalizable (so $A = S\Lambda S^{-1}$ is impossible)?

- (b) What is the largest range of values of c (real number) so that A^n approaches a limiting matrix A^{∞} as $n \to \infty$?
- (c) What is that limit of A^n (still depending on c)? You could work from $A = S\Lambda S^{-1}$ to find A^n .

Solution:

(a) Both columns add to 1. As we know for Markov matrices, $\lambda = 1$ is an eigenvalue. From trace(A) = .3 + (1 - c) the other eigenvalue is $\lambda = .3 - c$. Check: det $A = \lambda_1 \lambda_2 = (1)(.3 - c)$ is correct.

The eigenvector for $\lambda = 1$ is in the nullspaces of

$$A - I = \begin{bmatrix} -.7 & c \\ .7 & -c \end{bmatrix} \qquad \text{so } x_1 = \begin{bmatrix} c \\ .7 \end{bmatrix}$$
$$A - (.3 - c)I = \begin{bmatrix} c & c \\ .7 & .7 \end{bmatrix} \qquad \text{so } x_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

A is not diagonalizable when its eigenvalues are equal: 1 = .3 - c or c = -.7. (The two eigenvectors above become dependent at c = -.7)

(b)
$$A^n = S\Lambda^n S^{-1} = S \begin{bmatrix} 1 & 0 \\ 0 & (.3-c)^n \end{bmatrix} S^{-1}$$

This approaches a limit if |.3 - c| < 1. You could write that out as -.7 < c < 1.3 (Small note: at c = -.7 the eigenvalues are 1 and 1, at c = 1.3 the eigenvalues are 1 and -1.)

(c) The eigenvectors are in S. As $n \to \infty$ the smaller eigenvalue λ_2^n goes to zero, leaving

$$A^{\infty} = S \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} S^{-1} = \begin{bmatrix} c & 1 \\ .7 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ .7 & -c \end{bmatrix} / (c + .7)$$
$$= \begin{bmatrix} c \\ .7 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix} / (c + .7) = \begin{bmatrix} c & c \\ .7 & .7 \end{bmatrix} / (c + .7)$$

3 (30 pts.) Suppose A (3 by 4) has the Singular Value Decomposition (with real orthogonal matrices U and V)

$$A = U\Sigma V^{\mathrm{T}} = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \\ & & & & & \end{bmatrix}^{\mathrm{T}}$$

- (a) Find the rank of A and a basis for its column space C(A).
- (b) What are the eigenvalues and eigenvectors of $A^{T}A$? (You could first multiply A^{T} times A.)
- (c) What is Av_1 ? You could start with $V^{\mathrm{T}}v_1$ and then multiply by Σ and U to get $U\Sigma V^{\mathrm{T}}v_1$.

Solution:

- (a) Rank = $2 = \operatorname{rank}(A^{T}A) = \#$ of nonzero singular values. The vectors u_1 and u_2 (very sorry about the typo) are a basis for the column space of A.
- (b) $A^{\mathrm{T}}A = (V\Sigma^{\mathrm{T}}U^{\mathrm{T}})(U\Sigma V^{\mathrm{T}}) = V\Sigma^{\mathrm{T}}\Sigma V^{\mathrm{T}}$. The eigenvalues of $A^{\mathrm{T}}A$ are 4, 1, 0, 0 in the diagonal matrix $\Sigma^{\mathrm{T}}\Sigma$. The eigenvectors are v_1, v_2, v_3, v_4 in the matrix V.

(c)
$$V^{\mathrm{T}}v_{1} = \begin{bmatrix} v_{1}^{\mathrm{T}} \\ v_{2}^{\mathrm{T}} \\ v_{3}^{\mathrm{T}} \\ v_{4}^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} v_{1} \\ v_{1} \\ v_{1} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 by orthogonality of the v's.
Multiply by Σ to get $\begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$. Then multiply by U to get the final answer $2u_{1}$.

Thus $Av_1 = 2u_1$, which was a main point of the SVD.