Grading

Your name is: SOLUTIONS 1

3

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 oblomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 oblomkov
5) T12 2-132 I. Pak 2-390 3-4390 pak
6) $\mathrm{T} 1 \quad 2-131$
7) $\mathrm{T} 1 \quad 2-132$
8) $\mathrm{T} 2 \quad 2-132$
B. Santoro 2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 $3-4350$ jsantos

1 (40 pts.) This question deals with the following symmetric matrix A :

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

One eigenvalue is $\lambda=1$ with the line of eigenvectors $x=(c, c, 0)$.
(a) That line is the nullspace of what matrix constructed from A ?
(b) Find (in any way) the other two eigenvalues of A and two corresponding eigenvectors.
(c) The diagonalization $A=S \Lambda S^{-1}$ has a specially nice form because $A=A^{\mathrm{T}}$. Write all entries in the three matrices in the nice symmetric diagonalization of A.
(d) Give a reason why e^{A} is or is not a symmetric positive definite matrix.

Solution:

(a) The eigenvectors for $\lambda=1$ make up the nullspace of $A-I$.
(b) First method: A has trace 2 and determinant -2 . So the two eigenvalues after $\lambda_{1}=1$ will add to 1 and multiply to -2 . Those are $\lambda_{2}=2$ and $\lambda_{3}=-1$.

Second method: Compute $\operatorname{det}(A-\lambda I)=-\lambda^{3}+2 \lambda^{2}+\lambda-2$ and find the roots $1,2,-1$: (divide by $\lambda-1$ to get $\lambda^{2}-\lambda-2=0$ for the roots λ_{2} and λ_{3}).
Eigenvectors: $\lambda_{2}=2$ has $x_{2}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right], \lambda_{3}=-1$ has $x_{3}=\left[\begin{array}{r}1 \\ -1 \\ -2\end{array}\right]$.
(c) Every symmetric matrix has the nice form $A=Q \Lambda Q^{\mathrm{T}}$ with orthogonal matrix Q. The columns of Q are orthonormal eigenvectors. (They could be multiplied by -1 .)

$$
Q=\left[\begin{array}{crr}
1 / \sqrt{2} & 1 / \sqrt{3} & 1 / \sqrt{6} \\
1 / \sqrt{2} & -1 / \sqrt{3} & -1 / \sqrt{6} \\
0 & 1 / \sqrt{3} & -2 / \sqrt{6}
\end{array}\right] \quad \text { and } \quad \Lambda=\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & -1
\end{array}\right]
$$

(d) e^{A} is symmetric and all its eigenvalues e^{λ} are positive - so e^{A} is positive definite.

2 (30 pts.) (a) Find the eigenvalues and eigenvectors (depending on c) of

$$
A=\left[\begin{array}{cc}
.3 & c \\
.7 & 1-c
\end{array}\right]
$$

For which value of c is the matrix A not diagonalizable (so $A=S \Lambda S^{-1}$ is impossible)?
(b) What is the largest range of values of c (real number) so that A^{n} approaches a limiting matrix A^{∞} as $n \rightarrow \infty$?
(c) What is that limit of A^{n} (still depending on c)? You could work from $A=S \Lambda S^{-1}$ to find A^{n}.

Solution:

(a) Both columns add to 1 . As we know for Markov matrices, $\lambda=1$ is an eigenvalue. From $\operatorname{trace}(A)=.3+(1-c)$ the other eigenvalue is $\lambda=.3-c$. Check: $\operatorname{det} A=\lambda_{1} \lambda_{2}=$ $(1)(.3-c)$ is correct.

The eigenvector for $\lambda=1$ is in the nullspaces of

$$
\begin{array}{cc}
A-I=\left[\begin{array}{rr}
-.7 & c \\
.7 & -c
\end{array}\right] & \text { so } x_{1}=\left[\begin{array}{c}
c \\
.7
\end{array}\right] \\
A-(.3-c) I=\left[\begin{array}{rr}
c & c \\
.7 & .7
\end{array}\right] & \text { so } x_{2}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
\end{array}
$$

A is not diagonalizable when its eigenvalues are equal: $1=.3-c$ or $c=-.7$. (The two eigenvectors above become dependent at $c=-.7$)
(b) $A^{n}=S \Lambda^{n} S^{-1}=S\left[\begin{array}{cc}1 & 0 \\ 0 & (.3-c)^{n}\end{array}\right] S^{-1}$

This approaches a limit if $|.3-c|<1$. You could write that out as $-.7<c<1.3$ (Small note: at $c=-.7$ the eigenvalues are 1 and 1 , at $c=1.3$ the eigenvalues are 1 and -1 .)
(c) The eigenvectors are in S. As $n \rightarrow \infty$ the smaller eigenvalue λ_{2}^{n} goes to zero, leaving

$$
\begin{aligned}
A^{\infty}=S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S^{-1} & =\left[\begin{array}{rr}
c & 1 \\
.7 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
.7 & -c
\end{array}\right] /(c+.7) \\
& =\left[\begin{array}{l}
c \\
.7
\end{array}\right]\left[\begin{array}{ll}
1 & 1
\end{array}\right] /(c+.7)=\left[\begin{array}{cc}
c & c \\
.7 & .7
\end{array}\right] /(c+.7)
\end{aligned}
$$

3 (30 pts.) Suppose $A(3$ by 4$)$ has the Singular Value Decomposition (with real orthogonal matrices U and V)

$$
A=U \Sigma V^{\mathrm{T}}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4} \\
& & &
\end{array}\right]^{\mathrm{T}}
$$

(a) Find the rank of A and a basis for its column space $C(A)$.
(b) What are the eigenvalues and eigenvectors of $A^{\mathrm{T}} A$? (You could first multiply A^{T} times A.)
(c) What is $A v_{1}$? You could start with $V^{\mathrm{T}} v_{1}$ and then multiply by Σ and U to get $U \Sigma V^{\mathrm{T}} v_{1}$.

Solution:

(a) Rank $=2=\operatorname{rank}\left(A^{\mathrm{T}} A\right)=\#$ of nonzero singular values. The vectors u_{1} and u_{2} (very sorry about the typo) are a basis for the column space of A.
(b) $A^{\mathrm{T}} A=\left(V \Sigma^{\mathrm{T}} U^{\mathrm{T}}\right)\left(U \Sigma V^{\mathrm{T}}\right)=V \Sigma^{\mathrm{T}} \Sigma V^{\mathrm{T}}$. The eigenvalues of $A^{\mathrm{T}} A$ are $4,1,0,0$ in the diagonal matrix $\Sigma^{\mathrm{T}} \Sigma$. The eigenvectors are $v_{1}, v_{2}, v_{3}, v_{4}$ in the matrix V.
(c) $V^{\mathrm{T}} v_{1}=\left[\begin{array}{c}v_{1}^{\mathrm{T}} \\ v_{2}^{\mathrm{T}} \\ v_{3}^{\mathrm{T}} \\ v_{4}^{\mathrm{T}}\end{array}\right]\left[v_{1}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$ by orthogonality of the v 's.

Multiply by Σ to get $\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right]$. Then multiply by U to get the final answer $2 u_{1}$.
Thus $A v_{1}=2 u_{1}$, which was a main point of the SVD.

