18.06	Professor Strang	Quiz 3	May 5, 2004	
			Grading	
Your n	1			
			2	
			3	

Please circle your recitation:

1)	M2	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
2)	M3	2-131	I. Ben-Yaacov	2-101	3-3299	pezz
3)	M3	2-132	A. Oblomkov	2-092	3-6228	oblomkov
4)	T11	2-132	A. Oblomkov	2-092	3-6228	oblomkov
5)	T12	2-132	I. Pak	2-390	3-4390	pak
6)	T1	2-131	B. Santoro	2-085	2-1192	bsantoro
7)	T1	2-132	I. Pak	2-390	3-4390	pak
8)	T2	2-132	B. Santoro	2-085	2-1192	bsantoro
9)	T2	2-131	J. Santos	2-180	3-4350	jsantos

1 (40 pts.) This question deals with the following symmetric matrix A:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{bmatrix}$$

One eigenvalue is $\lambda = 1$ with the line of eigenvectors x = (c, c, 0).

- (a) That line is the nullspace of what matrix constructed from A?
- (b) Find (in any way) the other two eigenvalues of A and two corresponding eigenvectors.
- (c) The diagonalization $A = S\Lambda S^{-1}$ has a specially nice form because $A = A^{T}$. Write all entries in the three matrices in the nice symmetric diagonalization of A.
- (d) Give a reason why e^A is or is not a symmetric positive definite matrix.

2 (30 pts.) (a) Find the *eigenvalues* and *eigenvectors* (depending on c) of

$$A = \left[\begin{array}{rr} .3 & c \\ .7 & 1-c \end{array} \right]$$

•

For which value of c is the matrix A not diagonalizable (so $A = S\Lambda S^{-1}$ is impossible)?

- (b) What is the *largest range of values of* c (real number) so that A^n approaches a limiting matrix A^{∞} as $n \to \infty$?
- (c) What is that limit of A^n (still depending on c)? You could work from $A = S\Lambda S^{-1}$ to find A^n .

3 (30 pts.) Suppose A (3 by 4) has the Singular Value Decomposition (with real orthogonal matrices U and V)

$$A = U\Sigma V^{\mathrm{T}} = \left[\begin{array}{cccc} u_{1} & u_{2} & u_{3} \\ & & & \\ \end{array} \right] \left[\begin{array}{ccccc} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array} \right] \left[\begin{array}{ccccc} v_{1} & v_{2} & v_{3} & v_{4} \\ & & & & \\ \end{array} \right]^{\mathrm{T}}.$$

- (a) Find the rank of A and a basis for its column space C(A).
- (b) What are the eigenvalues and eigenvectors of $A^{T}A$? (You could first multiply A^{T} times A.)
- (c) What is Av_1 ? You could start with $V^{\mathrm{T}}v_1$ and then multiply by Σ and U to get $U\Sigma V^{\mathrm{T}}v_1$.