Grading

Your name is: $\quad 1$

3

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 oblomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 oblomkov
5) T12 2-132 I. Pak 2-390 3-4390 pak
6) $\mathrm{T} 1 \quad 2-131$
B. Santoro

2-085 2-1192 bsantoro
7) $\mathrm{T} 1 \quad 2-132$
I. Pak

2-390 3-4390 pak
8) $\mathrm{T} 2 \quad 2-132$
B. Santoro

2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 $\quad 3-4350$ jsantos

1 (40 pts.) This question deals with the following symmetric matrix A :

$$
A=\left[\begin{array}{rrr}
1 & 0 & 1 \\
0 & 1 & -1 \\
1 & -1 & 0
\end{array}\right]
$$

One eigenvalue is $\lambda=1$ with the line of eigenvectors $x=(c, c, 0)$.
(a) That line is the nullspace of what matrix constructed from A ?
(b) Find (in any way) the other two eigenvalues of A and two corresponding eigenvectors.
(c) The diagonalization $A=S \Lambda S^{-1}$ has a specially nice form because $A=A^{\mathrm{T}}$. Write all entries in the three matrices in the nice symmetric diagonalization of A.
(d) Give a reason why e^{A} is or is not a symmetric positive definite matrix.

2 (30 pts.) (a) Find the eigenvalues and eigenvectors (depending on c) of

$$
A=\left[\begin{array}{cc}
.3 & c \\
.7 & 1-c
\end{array}\right] .
$$

For which value of c is the matrix A not diagonalizable (so $A=S \Lambda S^{-1}$ is impossible)?
(b) What is the largest range of values of c (real number) so that A^{n} approaches a limiting matrix A^{∞} as $n \rightarrow \infty$?
(c) What is that limit of A^{n} (still depending on c)? You could work from $A=S \Lambda S^{-1}$ to find A^{n}.

3 (30 pts.) Suppose $A(3$ by 4$)$ has the Singular Value Decomposition (with real orthogonal matrices U and V)

$$
A=U \Sigma V^{\mathrm{T}}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
& & 1
\end{array}\right]\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4} \\
& & &
\end{array}\right]^{\mathrm{T}}
$$

(a) Find the rank of A and a basis for its column space $C(A)$.
(b) What are the eigenvalues and eigenvectors of $A^{\mathrm{T}} A$? (You could first multiply A^{T} times A.)
(c) What is $A v_{1}$? You could start with $V^{\mathrm{T}} v_{1}$ and then multiply by Σ and U to get $U \Sigma V^{\mathrm{T}} v_{1}$.

