18.06 Professor Strang Quiz $2 \quad$ April 2, 2004

	Grading
Your name is:	
	1
2	
Please circle your recitation:	2

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 $\quad 3-3299 \quad$ pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 oblomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 oblomkov
5) $\mathrm{T} 12 \quad 2-132$
I. Pak

2-390 3-4390 pak
6) $\mathrm{T} 1 \quad 2-131$
B. Santoro

2-085 2-1192 bsantoro
7) $\mathrm{T} 1 \quad 2-132$
I. Pak

2-390 3-4390 pak
8) $\mathrm{T} 2 \quad 2-132$
B. Santoro

2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 3-4350 jsantos

1 (20 pts.) We are given two vectors a and b in \mathbb{R}^{4} :

$$
a=\left[\begin{array}{c}
2 \\
5 \\
2 \\
4
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right]
$$

(a) Find the projection p of the vector b onto the line through a. Check (!) that the error $e=b-p$ is perpendicular to (what?)
(b) The subspace S of all vectors in \mathbb{R}^{4} that are perpendicular to this a is 3 -dimensional. Find the projection q of b onto this perpendicular subspace S. The numerical answer (it doesn't need a big computation!) is $q=$ \qquad

2 (30 pts.) Suppose q_{1}, q_{2}, q_{3} are 3 orthonormal vectors in \mathbb{R}^{n}. They go in the columns of an n by 3 matrix Q.
(a) What inequality do you know for n ?

Is there any condition on n for $Q^{\mathrm{T}} Q=I$ (3 by 3)?
Is there any condition on n for $Q Q^{\mathrm{T}}=I(n$ by $n)$?
(b) Give a nice matrix formula involving b and Q, for the projection p of a vector b onto the column space of Q.

Complete this sentence: p is the closest vector \qquad
(c) Suppose the projection of b onto that column space is $p=c_{1} q_{1}+c_{2} q_{2}+$ $c_{3} q_{3}$. Find a formula for c_{1} that only involves b and q_{1}. (You could take dot products with q_{1}.)

3 (20 pts.) Suppose the 4 by 4 matrix M has four equal rows all containing a, b, c, d. We know that $\operatorname{det}(M)=0$. The problem is to find by any method

$$
\operatorname{det}(I+M)=\left|\begin{array}{cccc}
1+a & b & c & d \\
a & 1+b & c & d \\
a & b & 1+c & d \\
a & b & c & 1+d
\end{array}\right|
$$

Note If you can't find $\operatorname{det}(I+M)$ in general, partial credit for the determinant when $a=b=c=d=1$.

4 (30 pts.) We are looking for the parabola $y=C+D t+E t^{2}$ that gives the least squares fit to these four measurements:
$y_{1}=1$ at $t_{1}=-2, y_{2}=1$ at $t_{2}=-1, y_{3}=1$ at $t_{3}=1, y_{4}=0$ at $t_{4}=2$.
(a) Write down the four equations (not solvable!) for the parabola $C+$ $D t+E t^{2}$ to go through those four points. This is the system $A x=b$ to solve by least squares:

$$
A\left[\begin{array}{l}
C \\
D \\
E
\end{array}\right]=b
$$

What equations would you solve to find the best C, D, E ?
(b) Compute $A^{\mathrm{T}} A$. Compute its determinant. Compute its inverse. NOT ASKING FOR C, D, E.
(c) The first two columns of A are already orthogonal. From column 3, subtract its projection onto the plane of the first two columns. That produces what third orthogonal vector v ? Normalize v to find the third orthonormal vector q_{3} from Gram-Schmidt.

