Your name is: SOLUTIONS

Please circle your recitation:

1) M2 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
2) M3 2-131 I. Ben-Yaacov 2-101 3-3299 pezz
3) M3 2-132 A. Oblomkov 2-092 3-6228 oblomkov
4) T11 2-132 A. Oblomkov 2-092 3-6228 oblomkov
5) T12 2-132 I. Pak 2-390 3-4390 pak
6) T1 2-131 B. Santoro 2-085 2-1192 bsantoro
7) T1 2-132 I. Pak 2-390 3-4390 pak
8) T2 2-132 B. Santoro 2-085 2-1192 bsantoro
9) T2 2-131 J. Santos 2-180 $3-4350$ jsantos

Problems 1-8 are 12 points each; Problem 9 is 4 points.
Thank you for taking 18.06!
$1 \quad$ Suppose A is an m by n matrix of rank r. You multiply it by any m by n invertible matrix E to get $B=E A$.
(a) Circle if true and cross out if false (three parts):

$$
A \text { and } B \text { have the }\left\{\begin{array}{l}
\text { same nullspace } \\
\text { same column space } \\
\text { same bases for row space. }
\end{array}\right.
$$

(b) Suppose the right E gives the row-reduced echelon matrix

$$
E A=R=\left[\begin{array}{llll}
1 & 4 & 0 & 6 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(1) Find a basis for the nullspace of A.
(2) True statement: The nullspace of a matrix is a vector space.

What does it mean for a set of vectors to be a vector space?
(c) What is the nullspace of a 5 by 4 matrix with linearly independent columns? What is the nullspace of a 4 by 5 matrix with linearly independent columns?

Solutions

(a) True, false, and true.
(b) A possible basis for $\boldsymbol{N}(A)$ is $(6,0,5,-1)$ and $(4,-1,0,0)$.
(c) Nullspace $=$ zero vector $(0,0,0,0)$; no 4 by 5 matrix has independent columns

2 This matrix A has column $1+$ column $2=$ column 3:

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Describe the column space $\boldsymbol{C}(A)$ in two ways:
(1) Give a basis for $\boldsymbol{C}(A)$.
(2) Find all vectors that are perpendicular to $\boldsymbol{C}(A)$.
(b) The projection matrix P onto the column space does not come from the usual formula $A\left(A^{\mathrm{T}} A\right)^{-1} A^{\mathrm{T}}$. Why not-what goes wrong with this formula?
(c) Find that matrix P for projection onto the column space of A.

Solutions

(a) (1) $(1,1,0)$ and $(1,1,1)$
(2) multiples of $(1,-1,0)$ are perpendicular to $\boldsymbol{C}(A)$
(b) Columns of A are not linearly independent, so $A^{T} A$ is not invertible.
(c) The matrix $B^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 0 & 1\end{array}\right]$ has the same column space as A.

Even better: take $B=\left[\begin{array}{cc}1 / \sqrt{2} & 0 \\ 1 / \sqrt{2} & 0 \\ 0 & 1\end{array}\right]$, that has orthonormal columns.
The second one has a much simplified formula: $P=B B^{T}=\left[\begin{array}{ccc}1 / 2 & 1 / 2 & 0 \\ 1 / 2 & 1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$.

3 Suppose P is the 3 by 3 projection matrix (so $P=P^{\mathrm{T}}=P^{2}$) onto the plane $2 x+$ $2 y-z=0$. You do not have to compute this matrix P but you can if you want.
(a) What is the rank of P ? What are its three eigenvalues? What is its column space?
(b) Is P diagonalizable - why or why not? Find a nonzero vector in its nullspace.
(c) If b is any unit vector in \mathbf{R}^{3}, find the number q. Explain your thinking in 1 sentence and 1 equation:

$$
q=\|P b\|^{2}+\|b-P b\|^{2} .
$$

Solutions

(a) $\operatorname{Rank}(P)=2$, since the column space is a plane $(2 x+2 y-z=0)$. The eigenvalues can only be 0 or 1 -since it has rank $2, \lambda=0,1$ and 1 .
(b) Being symmetric, P is diagonalizable. A non-zero vector in $N(P)=N\left(P^{\mathrm{T}}\right)$ is $(2,2,-1)$: it is orthogonal to the column space.
(c) $b=P b+(b-P b)$, and since $P b$ and $(b-P b)$ are orthogonal, we use Pythagorean Theorem! $1=\|b\|^{2}=\|P b\|^{2}+\|(b-P b)\|^{2}$. Or expand $b^{\mathrm{T}} P^{\mathrm{T}} P b+\cdots$

4 (a) If $a \neq c$, find the eigenvalue matrix Λ and eigenvector matrix S in

$$
A=\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right]=S \Lambda S^{-1} .
$$

(b) Find the four entries in the matrix A^{1000}.

Solutions

(a) $\left[\begin{array}{ll}a & b \\ 0 & c\end{array}\right]=\left[\begin{array}{cc}1 & b \\ 0 & c-a\end{array}\right]\left[\begin{array}{ll}a & 0 \\ 0 & c\end{array}\right]\left[\begin{array}{cc}c-a & -b \\ 0 & 1\end{array}\right] \frac{1}{c-a}$

$$
=\left[\begin{array}{cc}
1 & b /(c-a) \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & 0 \\
0 & c
\end{array}\right]\left[\begin{array}{cc}
1 & -b /(c-a) \\
0 & 1
\end{array}\right]
$$

(b) $A^{1000}=S \Lambda^{1000} S^{-1}=\left[\begin{array}{cc}a^{1000} & c^{1000} b \\ 0 & c^{1000}(c-a)\end{array}\right]\left[\begin{array}{cc}c-a & -b \\ 0 & 1\end{array}\right] \frac{1}{c-a}$

$$
=\left[\begin{array}{cc}
a^{1000} & \left(c^{1000}-a^{1000}\right) b /(c-a) \\
0 & c^{1000}
\end{array}\right]
$$

5 (a) Suppose $A^{\mathrm{T}} A x=0$. This tells us that $A x$ is in the \qquad space of A^{T}. Always $A x$ is in the \qquad space of A. Why can you conclude that $A x=0$?
(b) Supposing again that $A^{\mathrm{T}} A x=0$ we immediately get $x^{\mathrm{T}} A^{\mathrm{T}} A x=0$.

From this, show directly that $A x=0$.
Every matrix $A^{\mathrm{T}} A$ is symmetric and \qquad -.
(c) The rectangular m by n matrix A always has the same nullspace as the square matrix $A^{\mathrm{T}} A$ (this is proved above). Now deduce that A and $A^{\mathrm{T}} A$ have the same rank.

Solutions

(a) Nullspace of A^{T} and column space of A. Then $A x=0$ because $\boldsymbol{C}(A) \perp \boldsymbol{N}\left(A^{T}\right)$.
(b) $x^{\mathrm{T}} A^{\mathrm{T}} A x=(A x)^{\mathrm{T}}(A x)=\|A x\|^{2}=0$, hence $A x=0$. Then $A^{\mathrm{T}} A$ is positive semidefinite.
(c) $\operatorname{Rank}\left(A^{\mathrm{T}} A\right)+\operatorname{dim} \boldsymbol{N}\left(A^{\mathrm{T}} A\right)=n=\operatorname{Rank}(A)+\operatorname{dim} \boldsymbol{N}(A)$. With equal nullspaces we get equal ranks.

6 Suppose $A=\operatorname{ones}(3,5)$ and $A^{\mathrm{T}}=$ ones $(5,3)$ are the 3 by 5 and 5 by 3 matrices of all 1's.
(a) Find the trace of $A A^{\mathrm{T}}$ and the trace of $A^{\mathrm{T}} A$.
(b) Find the eigenvalues of $A A^{\mathrm{T}}$ and the eigenvalues of $A^{\mathrm{T}} A$.
(c) What is the matrix Σ in the singular value decomposition $A=U \Sigma V^{\mathrm{T}}$?

Solutions

(a) $A A^{\mathrm{T}}=5 *$ ones $(3,3)$ and $A^{\mathrm{T}} A=3 *$ ones $(5,5)$, so both traces are 15 .
(b) Since both ranks are $1, \operatorname{eig}\left(A A^{\mathrm{T}}\right)=\{15,0,0\}$, and $\operatorname{eig}\left(A A^{\mathrm{T}}\right)=\{15,0,0,0,0\}$.
(c) $\Sigma=\left[\begin{array}{ccccc}\sqrt{15} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.

7 (a) By elimination or otherwise, find the determinant of A :

$$
A=\left[\begin{array}{cccc}
1 & 0 & 0 & u_{1} \\
0 & 1 & 0 & u_{2} \\
0 & 0 & 1 & u_{3} \\
v_{1} & v_{2} & v_{3} & 0
\end{array}\right]
$$

(b) If that zero in the lower right corner of A changes to 100, what is the change (if any) in the determinant of A ? (You can consider its cofactors)
(c) If $\left(u_{1}, u_{2}, u_{3}\right)$ is the same as $\left(v_{1}, v_{2}, v_{3}\right)$ so A is symmetric, decide if A is or is not positive definite - and why?
(d) Show that this block matrix M is singular for any u and v in \mathbf{R}^{n}, by finding a vector in its nullspace:

$$
M=\left[\begin{array}{cc}
I & u \\
v^{\mathrm{T}} & v^{\mathrm{T}} u
\end{array}\right] .
$$

Solutions

(a) The determinant is $-v^{\mathrm{T}} u$:

$$
\operatorname{det}(A)=\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 0 & u_{1} \\
0 & 1 & 0 & u_{2} \\
0 & 0 & 1 & u_{3} \\
0 & v_{2} & v_{3} & -u_{1} v_{1}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & u_{2} \\
0 & 1 & u_{3} \\
v_{2} & v_{3} & -u_{1} v_{1}
\end{array}\right]=-v^{\mathrm{T}} u
$$

(b) The cofactor of the $(4,4)$ entry is 100 , so det changes by 100 :

$$
\operatorname{det}\left(A^{\prime}\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & 0 & 0 & u_{1} \\
0 & 1 & 0 & u_{2} \\
0 & 0 & 1 & u_{3} \\
0 & v_{2} & v_{3} & 100-u_{1} v_{1}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}
1 & 0 & u_{2} \\
0 & 1 & u_{3} \\
v_{2} & v_{3} & 100-u_{1} v_{1}
\end{array}\right]=100-v^{\mathrm{T}} u .
$$

(c) Since in this case $\operatorname{det}(A)=-\|u\|^{2} \leq 0$, at least one of the eigenvalues is not positive. Hence A cannot be positive definite.
(d) The vector is $\left[\begin{array}{c}-u \\ 1\end{array}\right]$.

8 Suppose q_{1}, q_{2}, q_{3} are orthonormal vectors in \mathbf{R}^{4} (not \mathbf{R}^{3} !).
(a) What is the length of the vector $v=2 q_{1}-3 q_{2}+2 q_{3}$?
(b) What four vectors does Gram-Schmidt produce when it orthonormalizes the vectors q_{1}, q_{2}, q_{3}, u ?
(c) If u in part (b) is the vector v in part (a), why does Gram-Schmidt break down? Find a nonzero vector in the nullspace of the 4 by 4 matrix

$$
A=\left[\begin{array}{llll}
q_{1} & q_{2} & q_{3} & v
\end{array}\right] \quad \text { with columns } q_{1}, q_{2}, q_{3}, v
$$

Solutions

(a) By orthogonality (the Pythagorean Theorem) $\|v\|^{2}=\left\|2 q_{1}-3 q_{2}+2 q_{3}\right\|^{2}=4+9+4=17$.
(b) q_{1}, q_{2}, q_{3} and

$$
q_{4}=\frac{u-\left(q_{1}^{\mathrm{T}} u\right) q_{1}-\left(q_{2}^{\mathrm{T}} u\right) q_{2}-\left(q_{3}^{\mathrm{T}} u\right) q_{3}}{\left\|u-\left(q_{1}^{\mathrm{T}} u\right) q_{1}-\left(q_{2}^{\mathrm{T}} u\right) q_{2}-\left(q_{3}^{\mathrm{T}} u\right) q_{3}\right\|} .
$$

(c) Gram-Schmidt fails because v is a linear combination of the q_{i} 's: Not independent.

A vector in $\boldsymbol{N}(A)$ is $(2,-3,2,-1)$.

9 (4 points) PROVE (give a clear reason): If A is a symmetric invertible matrix then A^{-1} is also symmetric.

Solutions

$A A^{-1}=I$ leads to $\left(A A^{-1}\right)^{\mathrm{T}}=\left(A^{-1}\right)^{\mathrm{T}} A^{\mathrm{T}}=I$. Hence always $\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}$. If $A=A^{\mathrm{T}}$, then $\left(A^{-1}\right)^{\mathrm{T}}=\left(A^{\mathrm{T}}\right)^{-1}=A^{-1}$ and A^{-1} is symmetric.

Proof 2: The i, j cofactor of A equals the j, i cofactor. Then $A^{-1}=($ cofactor matrix $) / \operatorname{det} A$ is symmetric.

