18.06 Professor A.J. de Jong Exam 2 April 9, 2003

Your name is:

Please circle your recitation:

Important: Briefly explain all of your answers.

1 (29 pts.)

(a) Compute the determinant of the following matrix

$$
\left|\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 & 2
\end{array}\right|=-\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 2 \\
1 & 2 & 1 & 2
\end{array}\right|=-\left|\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right|=-\left|\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right|=-1
$$

We expanded the determinant along row 1 then subtracted row 1 from rows 3 and 4 and then expanded the determinant along the 1st column. The last $3 x 3$ determinant was computed directly.
(b) Give a basis for each of the four fundamental subspaces associated to the following matrix

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 0 & -1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

We switched rows 1 and 2 then subtracted row 1 from row 3 and then subtracted row 2 from row 3.

First two rows $(0,1,-1,0)$ and $(1,0,-1,0)$ is a basis for the row space.
First two columns $(0,1,1)$ and $(1,0,-1)$ is a basis for the column space.
Solving $A v=0$ we get $x_{1}=x_{2}=x_{3}$. Thus, $(1,1,1,0)$ and $(0,0,0,1)$ is a basis for the $\operatorname{Null}(A)$ space.
Solving $A^{t} v=0$ we get $x_{1}=-x_{2}=x_{3}$. Thus, $(1,-1,1)$ is a basis for the $\operatorname{Null}\left(A^{t}\right)$ space.

2 (29 pts.)

(a) Apply the Gram-schmidt algorithm to the columns of the matrix A below. (Use the order in which they occur in the matrix!) Use this to write $A=Q R$, where Q is a matrix with orthonormal columns, and R is upper triangular.

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
-1 & -1
\end{array}\right)
$$

$q_{1}=a_{1}=(1,0,0,-1)$.
$q_{2}=a_{2}-\frac{\left(a_{2} \cdot q_{1}\right)}{\left(q_{1} \cdot q_{1}\right)} q_{1}=(0,1,0,-1)-(1 / 2,0,0,-1 / 2)=(-1 / 2,1,0,-1 / 2)$.
Normalize $q_{1}=(1 / \sqrt{2}, 0,0,-1 / \sqrt{2}), q_{2}=(-1 / \sqrt{6}, 2 / \sqrt{6}, 0,-1 / \sqrt{6}) . \quad Q=\left[q_{1}, q_{2}\right]$, $R=Q^{t} A$.

$$
A=Q R=\left(\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{6} \\
0 & 2 / \sqrt{6} \\
0 & 0 \\
-1 / \sqrt{2} & -1 / \sqrt{6}
\end{array}\right) \cdot\left(\begin{array}{cc}
\sqrt{2} & 1 / \sqrt{2} \\
0 & 3 / \sqrt{6}
\end{array}\right) .
$$

(b) Compute the matrix of the projection onto the column space of A. What is the distance of the point $(1,1,1,0)$ to this column space?

$$
P=Q Q^{t}=\left(\begin{array}{cccc}
2 / 3 & -1 / 3 & 0 & -1 / 3 \\
-1 / 3 & 2 / 3 & 0 & -1 / 3 \\
0 & 0 & 0 & 0 \\
-1 / 3 & -1 / 3 & 0 & 2 / 3
\end{array}\right) .
$$

If $b=(1,1,1,0)$ then its projection is $p=P b=(1 / 3,1 / 3,0,-2 / 3)$. The distance $d=\|b-p\|=\|(2 / 3,2 / 3,1,2 / 3)\|=\sqrt{21} / 3$.

3 (14 pts.) Show that the following determinant is zero for any values of a, b and c :

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right|=\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
a+b+c & b+c+a & c+a+b
\end{array}\right|=0
$$

We added row 2 to row 3 . The determinant is 0 since rows 1 and 3 are multiples of each other.

4 (28 pts.) Let A be the matrix

$$
\left(\begin{array}{cc}
7 & 5 \\
3 & -7
\end{array}\right)
$$

(a) Find matrices S and Λ such that A has a factorization of the form

$$
A=S \Lambda S^{-1}
$$

where S is invertible and Λ is diagonal: $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.
$\operatorname{det}(A-\lambda I)=0$. The eigenvalues: $\lambda^{2}-64=0, \lambda_{1}=8, \lambda_{2}=-8$. Eigenvectors:
$\left(A-\lambda_{1} I\right) v_{1}=\left(\begin{array}{cc}-1 & 5 \\ 3 & -15\end{array}\right) v_{1}=0$ then $v_{1}=(5,1)$,
$\left(A-\lambda_{2} I\right) v_{2}=\left(\begin{array}{cc}15 & 5 \\ 3 & 1\end{array}\right) v_{2}=0$ then $v_{2}=(1,-3)$.
$S=\left(\begin{array}{cc}5 & 1 \\ 1 & -3\end{array}\right), \Lambda=\left(\begin{array}{cc}8 & 0 \\ 0 & -8\end{array}\right), S^{-1}=(-1 / 16)\left(\begin{array}{cc}-3 & -1 \\ -1 & 5\end{array}\right)$.
(b) Find a matrix B such that $B^{3}=A$. (Hint: First find such a matrix for Λ. Then use the formula above.)
$B=S \Lambda^{1 / 3} S^{-1}=\left(\begin{array}{cc}5 & 1 \\ 1 & -3\end{array}\right) \cdot\left(\begin{array}{cc}2 & 0 \\ 0 & -2\end{array}\right) \cdot(-1 / 16)\left(\begin{array}{cc}-3 & -1 \\ -1 & 5\end{array}\right)=1 / 4\left(\begin{array}{cc}7 & 5 \\ 3 & -7\end{array}\right)$.

