18.06 Professor A.J. de Jong Exam 2 April 9, 2003

Your name is:

Please circle your recitation:

Important: Briefly explain all of your answers.

1 (29 pts.)

(a) Compute the determinant of the following matrix

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 \\
0 & 2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 & 2 \\
1 & 3 & 2 & 1 & 2
\end{array}\right)
$$

Mention the method used for each step in the calculation.
(b) Give a basis for each of the four fundamental subspaces associated to the following matrix

$$
\left(\begin{array}{cccc}
0 & 1 & -1 & 0 \\
1 & 0 & -1 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

2 (29 pts.)

(a) Apply the Gram-schmidt algorithm to the columns of the matrix A below. (Use the order in which they occur in the matrix!) Use this to write $A=Q R$, where Q is a matrix with orthonormal columns, and R is upper triangular.

$$
A=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0 \\
-1 & -1
\end{array}\right)
$$

(b) Compute the matrix of the projection onto the column space of A. What is the distance of the point $(1,1,1,0)$ to this column space?

3 (14 pts .) Show that the following determinant is zero for any values of a, b and c :

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
a & b & c \\
b+c & c+a & a+b
\end{array}\right|
$$

4 (28 pts.) Let A be the matrix

$$
\left(\begin{array}{cc}
7 & 5 \\
3 & -7
\end{array}\right)
$$

(a) Find matrices S and Λ such that A has a factorization of the form

$$
A=S \Lambda S^{-1}
$$

where S is invertible and Λ is diagonal: $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$.
(b) Find a matrix B such that $B^{3}=A$. (Hint: First find such a matrix for Λ. Then use the formula above.)

