18.06 Exam 2 \#1 Solutions

1. The row echelon form of A is $\left[\begin{array}{cccc}1 & 2 & -1 & 4 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$. So we find that a basis for $R\left(A^{T}\right)$ is $\{(1,2,-1,4),(0,1,-2,3)\}$, and a basis for $N(A)$ is $\{(-3,2,1,0),(2,-3,0,1)\}$. Similarly, row echelon form of A^{T} is $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. So a basis for $C(A)$ is $\{(1,0,-1),(0,1,2)\}$ and a basis for $N\left(A^{T}\right)$ is $\{(1,-2,1)\}$.
2. a) Using the row operation $R 4-R 1$ gives

$$
\left|\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
1 & 1 & -1 & 0 \\
2 & 1 & 2 & 0 \\
-1 & -1 & 0 & 1
\end{array}\right| \xlongequal{ }\left|\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
1 & 1 & -1 & 0 \\
2 & 1 & 2 & 0 \\
-0 & -3 & 0 & 0
\end{array}\right| .
$$

Using a cofactor expansion about the fourth column gives

$$
\begin{aligned}
\left|\begin{array}{cccc}
-1 & 2 & 0 & 1 \\
1 & 1 & -1 & 0 \\
2 & 1 & 2 & 0 \\
-0 & -3 & 0 & 0
\end{array}\right| & =(-1)\left|\begin{array}{ccc}
1 & 1 & -1 \\
2 & 1 & 2 \\
0 & 3 & 0
\end{array}\right| \\
& =(-1)(3)\left|\begin{array}{cc}
1 & -1 \\
2 & 2
\end{array}\right|=-12
\end{aligned}
$$

(here, we computed the 3×3 determinant by expanding about the third row.
b) Using Cramer's rule,

$$
A^{-1}(1,4)=\frac{C_{4,1}}{\operatorname{det}(A)}=\frac{(-1)^{4+1}\left|\begin{array}{ccc}
2 & 0 & 1 \\
1 & -1 & 0 \\
1 & 2 & 0
\end{array}\right|}{\operatorname{det}(A)}=\frac{-3}{-12}=\frac{1}{4}
$$

c)

$$
\begin{aligned}
\operatorname{det}\left(2 A^{2} A^{T}\left(A^{-1}\right)^{3}\right) & =\operatorname{det}(2 I) \operatorname{det}(A)^{2} \operatorname{det}\left(A^{T}\right) \operatorname{det}\left(A^{-1}\right)^{3} \\
& =2^{4} \cdot \operatorname{det}(A)^{2} \operatorname{det}(A) \operatorname{det}(A)^{-3}=16
\end{aligned}
$$

3. A basis for the space in question is $\{(1,1,0,0),(2,0,1,0),(-1,0,0,1)\}$. To get a orthogonal basis, we need to do the Gram-Schmidt algorithm. Start with $v_{1}=(1,1,0,0), v_{2}=$ $(2,0,1,0), v_{3}=(-1,0,0,1)$,

$$
\begin{aligned}
& \tilde{v_{1}}=v_{1}=(1,1,0,0) \\
& \tilde{v_{2}}=v_{2}-\frac{\left(\tilde{v_{1}}, v_{2}\right)}{\left|\tilde{v_{1}}\right|^{2}} \tilde{v_{1}}=(1,-1,1,0) \\
& \tilde{v_{3}}=v_{3}-\frac{\left(\tilde{v_{1}}, v_{3}\right)}{\left|\tilde{v_{1}}\right|^{2}} \tilde{v_{1}}-\frac{\left(\tilde{v_{2}}, v_{3}\right)}{\left|\tilde{v_{2}}\right|^{2}} \tilde{v_{2}}=\left(-\frac{1}{6}, \frac{1}{6}, \frac{1}{3}, 1\right)
\end{aligned}
$$

Then $\left\{\tilde{v_{1}}, \tilde{v_{2}}, \tilde{v_{3}}\right\}$ is a set of orthogonal basis, to make them orthonormal, just multiply each \tilde{v}_{i} by the reciprocal of its norm. So an orthonormal basis for the subspace in the problem is $\left\{\frac{\tilde{v}_{1}}{\left|\hat{v_{1}}\right|}, \frac{\tilde{v}_{2}}{\left|v_{2}\right|}, \frac{\tilde{z}_{3}}{\left|\overrightarrow{v_{3}}\right|}\right\}=\left\{\frac{1}{\sqrt{2}}(1,1,0,0), \frac{1}{\sqrt{3}}(1,-1,1,0), \frac{1}{\sqrt{42}}(-1,1,2,6)\right\}$.
4. a) $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 4\end{array}\right], \hat{x}=\left[\begin{array}{l}C \\ D\end{array}\right], b=\left[\begin{array}{l}2 \\ 3 \\ 5\end{array}\right], \hat{x}$ is the solution to the linear equation $A^{T} A \hat{x}=$ $A^{T} b$, and the least squares line is $y=C+D x$.
b) $P=B\left(B^{T} B\right)^{-1} B^{T}$.

