18.06 Exam 1 \#1 Solutions

1 a)

$$
\begin{array}{r}
\vec{v} \cdot \vec{x}=0 \Rightarrow x_{1}+2 x_{2}+x_{3}=0 \\
\vec{w} \cdot \vec{x}=0 \Rightarrow 2 x_{1}+4 x_{2}+3 x_{3}=0
\end{array}
$$

So the set to be found is the nullspace of the matrix $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 3\end{array}\right]$. The row echelon form of A is $\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$. The second variable, x_{2}, is free and the vector $(-2,1,0)$ is a basis of the nullspace.
b) Since the set in a) is the nullspace of the matrix A, it is a vector space. Generally to prove a set satisfying some property, say P, is a vector space, one needs to show:
(1) If \vec{x} satisfies property P, then $c \vec{x}$ also satisfies property P, for any $c \in \mathbb{R}$.
(2) If \vec{x}, \vec{y} satisfy property P, then $\vec{x}+\vec{y}$ also satisfies property P.

2 a)

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-2 & 0 & 3 \\
-4 & 3 & -2 \\
8 & 9 & 11
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
-2 & 0 & 3 \\
0 & 3 & -8 \\
0 & 9 & 23
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
-2 & 0 & 3 \\
0 & 3 & -8 \\
0 & 0 & 47
\end{array}\right]
\end{aligned}
$$

So

$$
\begin{aligned}
L & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-4 & 3 & 1
\end{array}\right] \\
U & =\left[\begin{array}{ccc}
-2 & 0 & 3 \\
0 & 3 & -8 \\
0 & 0 & 47
\end{array}\right]
\end{aligned}
$$

b) To solve $A \vec{x}=L U \vec{x}=\vec{b}$, it is equivalent to solve the two equations $L \vec{y}=\vec{b}$ and $U \vec{x}=\vec{y}$.

$$
\begin{aligned}
& L \vec{y}=\vec{b} \Rightarrow\left\{\begin{array}{rl}
y_{1} & =3 \\
2 y_{1}+y_{2} & =-1 \\
-4 y_{1}+3 y_{2}+y_{3} & =13
\end{array} \Rightarrow \vec{y}=\left[\begin{array}{c}
3 \\
-7 \\
46
\end{array}\right] .\right. \\
& U \vec{x}=\vec{y} \Rightarrow \vec{y}=\left[\begin{array}{c}
\frac{-3}{94} \\
\frac{93}{47} \\
\frac{46}{47}
\end{array}\right] .
\end{aligned}
$$

3 a) Denote $B=\left[\begin{array}{lll}1 & 2 & 4 \\ 3 & 1 & 7 \\ 5 & 2 & 6\end{array}\right], P=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$, Then

$$
B A=P \Rightarrow P^{-1} B A=I \Rightarrow P^{-1} B=A^{-1}
$$

Because P is a permutation matrix, $P^{-1}=P^{T}$. So

$$
A^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 2 & 4 \\
3 & 1 & 7 \\
5 & 2 & 6
\end{array}\right]=\left[\begin{array}{lll}
3 & 1 & 7 \\
5 & 2 & 6 \\
1 & 2 & 4
\end{array}\right]
$$

b) i B, D have full column rank, so the nullspace of each is the zero vector. Now

$$
B D \vec{x}=0 \Rightarrow D \vec{x} \in N(B)=\{0\} \Rightarrow D \vec{x}=0 \Rightarrow \vec{x}=0
$$

Hence $\mathrm{N}(\mathrm{BD})=0$.
ii This time only B has full column rank, that is, $N(B)=\{0\}$.

$$
B D \vec{x}=0 \Rightarrow D \vec{x} \in N(B)=\{0\} \Rightarrow D \vec{x}=0 \Rightarrow \vec{x} \in N(D)
$$

So $N(B D) \subseteq N(D)$. On the other hand,

$$
D \vec{x}=0 \Rightarrow B D \vec{x}=B 0=0 \Rightarrow x \in N(B D) \Rightarrow N(D) \subseteq N(B D)
$$

So $N(D)=N(B D)$, which is all we can say about $N(B D)$ without further assumptions on D.
iii $r<n$, implies B is not of full column rank and the nullspace of B contains an infinite number of vectors. $r<m$ implies the row echelon form of B has zero rows, so the equation $B \vec{x}=\vec{b}$ has no solutions for some \vec{b}. Furthermore, if there is a solution to $B \vec{x}=\vec{b}$, say $\overrightarrow{x_{p}}$, then there are infinitely many solutions since $\overrightarrow{x_{p}}+\overrightarrow{x_{n}}$ is a solution for any $\overrightarrow{x_{n}}$ in $N(B)$. The answer to the question is 0 or infinitely many.
4 a) Apply row operations on A and get the following matrix

$$
R=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -1 & c-3 & -3 \\
0 & 0 & 2(c-3) & -8 \\
0 & 0 & 0 & d-8
\end{array}\right]
$$

- No values of c, d will make the rank of A equal to 2 .
- if $c \neq 3, d \neq 8, R$ is the row echelon form of A and A has rank 4.
- Any other combination of c, d will give rank 3 , that is, the rank is 3 if $c=3$ or $d=8$.
b) substituting $c=3, d=8$ in the matrix R, one finds that the third column gives a free variable, and null space of A is spanned by $(-3,0,1,0)$. Use the augmented matrix $[A \mid \vec{b}]$ (NOT $[R \mid \vec{b}]$) to find a particular solution of the equation $A \vec{x}=\vec{b}$, which is $(-1 / 2,1 / 4,0,1 / 4)$. So the complete solution of the equation is $(-1 / 2,1 / 4,0, / 1 / 4)+x_{3}(-3,0,1,0)$.

