Please circle your recitation:

1) M 2 2-131 W. Fong
2) M 2 2-132 L. Nave
3) M 3 2-131 W. Fong
4) $\mathrm{T} 10 \quad 2-131$
H. Matzinger
5) T 10 2-132 P. Clifford
6) T $11 \quad 2-131$
H. Matzinger
7) T 11 2-132 P. Clifford
8) T $12 \quad 2-132$
M. Skandera
9) T 12 2-131 V. Kac
10) T 1 2-131 H. Matzinger
11) T 2 2-132 M. Skandera

1 (25 pts.) (a) Find equations (do not solve) for the coefficients C, D, E in $b=C+D t+E t^{2}$, the parabola which best fits the four points $(t, b)=(0,0),(1,1),(1,3)$ and $(2,2)$.
(b) In solving this problem you are projecting the vector $b=$ \qquad onto the subspace spanned by \qquad The projection in terms of C, D, E is $p=$

2 (28 pts.) Let

$$
A=\left[\begin{array}{rrr}
3 & 4 & 6 \\
0 & 1 & 0 \\
-1 & -2 & -2
\end{array}\right]
$$

(a) Find the eigenvalues of the singular matrix A.
(b) Find a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
(c) By expressing $(1,1,1)$ as a combination of eigenvectors or by diagonalizing $A=S \Lambda S^{-1}$, compute

$$
A^{99}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

3 (25 pts.) Start with two vectors (the columns of A):

$$
a_{1}=\left[\begin{array}{c}
\cos \theta \\
0 \\
\sin \theta
\end{array}\right] \quad \text { and } \quad a_{2}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .
$$

(a) With $q_{1}=a_{1}$ find an orthonormal basis q_{1}, q_{2} for the space spanned by a_{1} and $a_{2}($ column space of $A)$.
(b) What shape is the matrix R in $A=Q R$ and why is $R=Q^{T} A$? Here Q has columns q_{1} and q_{2}. Compute the matrix R.
(c) Find the projection matrices P_{A} and P_{Q} onto the column spaces of A and Q.

4 (22 pts.) (a) If Q is an orthogonal matrix (square with orthonormal columns), show that $\operatorname{det} Q=1$ or -1 .
(b) How many of the 24 terms in $\operatorname{det} A$ are nonzero, and what is $\operatorname{det} A$?

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right]
$$

