1 (a)
$$N(A) = N(B)$$
 and $C(A^T) = C(B^T)$
(b) $\begin{bmatrix} 1\\2\\0\\7 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\5 \end{bmatrix}$ for the row space; $\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -7\\0\\-5\\1 \end{bmatrix}$ for the nullspace.

(c) **True**

Reason: Whenever a combination cx + dy = 0, multiply by A to see that c(Ax) + d(Ay) = 0.

2 (a)
$$\begin{bmatrix} -1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -1 \\ 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}$ (The first matrix is invertible so it has no effect on the nullspace)

(b) The pivot columns are 1, 2, 4 (and the first matrix has an effect!)

$$t!) \begin{bmatrix} 1\\1\\7 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 4\\6\\28 \end{bmatrix}.$$

(c)
$$x = x_p + x_n = \begin{bmatrix} 3\\0\\0\\0\\0\end{bmatrix} + c_1 \begin{bmatrix} -1\\-2\\1\\0\\0\end{bmatrix} + c_2 \begin{bmatrix} -1\\1\\0\\-1\\1\end{bmatrix}$$
.

- **3** (a) Those vectors y are dependent, they span a space $N(A^T)$ that has dimension 2. So m - r = 2 and m = 3 and r = 1.
 - (b) The second block of rows copies the first so no increase in the rank. Same for the second block of columns. So those extra blocks leave the rank unchanged.
 - (c) If r = m then Ax = b has a solution (one or more) for every right side b.
- 4 (a)-(b) The particular solution says that $\operatorname{column} 2 + \operatorname{column} 3 = \operatorname{right} \operatorname{side} b$. The nullspace solution says that $2(\operatorname{column} 2) + \operatorname{column} 3 = 0$. Therefore $\operatorname{column} 2 = -b$ and $\operatorname{column} 3 = 2b$.
 - (c) Since the nullspace is one-dimensional, the 3 by 4 matrix A has rank 2. Therefore we know that the first column of A is *not* a multiple of b.