Your name is:

Grading 1

Please circle your recitation:

1) M 2 2-131 W. Fong
2) M 2 2-132 L. Nave
3) M 3 2-131 W. Fong
4) T 10 2-131 H. Matzinger
5) T 10 2-132 P. Clifford
6) $T 11 \quad 2-131$
H. Matzinger
7) T 11 2-132 P. Clifford
8) $\mathrm{T} 12 \quad 2-132$
M. Skandera
9) T 12 2-131 V. Kac
10) $\mathrm{T} 1 \quad 2-131$
H. Matzinger
11) T 2 2-132 M. Skandera

1 (25 pts.) Suppose that row operations (elimination) reduce the matrices A and B to the same row echelon form

$$
R=\left[\begin{array}{llll}
1 & 2 & 0 & 7 \\
0 & 0 & 1 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Which of the four subspaces are sure to be the same for A and B ? ($\left.C(A)=C(B) ? N(A)=N(B) ? C\left(A^{T}\right)=C\left(B^{T}\right) ? N\left(A^{T}\right)=N\left(B^{T}\right) ?\right)$
(b) Each time the subspaces in part (a) are the same for A and B, find a basis for that subspace.
(c) True or False (A is any matrix and x, y are two vectors): If $A x$ and $A y$ are linearly independent then x and y are linearly independent.

2 (25 pts.) Suppose

$$
A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
1 & 1 & 0 \\
7 & -1 & 2
\end{array}\right]\left[\begin{array}{lllll}
1 & 0 & 1 & 4 & 5 \\
0 & 1 & 2 & 2 & 1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]
$$

(a) Find a basis for the nullspace of A.
(b) Find a basis for the column space of A.
(c) Give the complete solution to

$$
A x=\left[\begin{array}{r}
3 \\
3 \\
21
\end{array}\right] .
$$

3 ($\mathbf{2 5}$ pts.) Suppose A is a 3×5 matrix and the solutions to $A^{T} y=0$ are spanned by the vectors

$$
y=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] .
$$

(a) What is the rank of this A ?
(b) For all A, why does the rank of A equal the rank of the block matrix

$$
B=\left[\begin{array}{ll}
A & A \\
A & A
\end{array}\right] ?
$$

(c) If the rank of a matrix A equals the number of rows $(r=m)$, what do we know about the equation $A x=b$?

4 (25 pts.) Suppose A is a 4 by 3 matrix, and the complete solution to

$$
A x=\left[\begin{array}{l}
1 \\
4 \\
1 \\
1
\end{array}\right] \quad \text { is } \quad x=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{1}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]
$$

(a) What is the third column of A ?
(b) What is the second column of A ?
(c) Give all known information about the first column of A.

