1 8.06 Quiz 1			1	October 8, 1999				Closed Book	
Your	name	is:						Grading	$\frac{1}{2}$
Please	e circ	le you	ır recitati	on:					$\frac{2}{3}$
1)	M 2	2-131	W. Fong		2)	M 2	2-132	L. Nave	
3)	М 3	2-131	W. Fong		4)	T 10	2-131	H. Matzinger	
5)	T 10	2-132	P. Clifford		6)	T 11	2-131	H. Matzinger	
7)	T 11	2 - 132	P. Clifford		8)	T 12	2-132	M. Skandera	
9)	T 12	2 - 131	V. Kac		10)	Τ1	2 - 131	H. Matzinger	

- 11) T 2 2-132 M. Skandera
- 1 (25 pts.) Suppose that row operations (elimination) reduce the matrices A and B to the same row echelon form

$$R = \left[\begin{array}{rrrr} 1 & 2 & 0 & 7 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 \end{array} \right].$$

- (a) Which of the four subspaces are sure to be the same for A and B? (C(A) = C(B)? N(A) = N(B)? $C(A^T) = C(B^T)$? $N(A^T) = N(B^T)$?)
- (b) Each time the subspaces in part (a) are the same for A and B, find a basis for that subspace.
- (c) True or False (A is any matrix and x, y are two vectors): If Ax and Ay are linearly independent then x and y are linearly independent.

2 (25 pts.) Suppose

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 7 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 4 & 5 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

- (a) Find a basis for the nullspace of A.
- (b) Find a basis for the column space of A.
- (c) Give the complete solution to

$$Ax = \begin{bmatrix} 3\\ 3\\ 21 \end{bmatrix}.$$

3 (25 pts.) Suppose A is a 3 x 5 matrix and the solutions to $A^T y = 0$ are spanned by the vectors

$$y = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}.$$

- (a) What is the rank of this A?
- (b) For all A, why does the rank of A equal the rank of the block matrix

$$B = \left[\begin{array}{cc} A & A \\ A & A \end{array} \right]?$$

(c) If the rank of a matrix A equals the number of rows (r = m), what do we know about the equation Ax = b? 4 (25 pts.) Suppose A is a 4 by 3 matrix, and the complete solution to

$$Ax = \begin{bmatrix} 1\\ 4\\ 1\\ 1\\ 1 \end{bmatrix} \quad \text{is} \quad x = \begin{bmatrix} 0\\ 1\\ 1\\ 1 \end{bmatrix} + c_1 \begin{bmatrix} 0\\ 2\\ 1\\ 1 \end{bmatrix}.$$

- (a) What is the third column of A?
- (b) What is the second column of A?
- (c) Give all known information about the first column of A.