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Show all your work on these pages.
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1. Let A =

 4 1

−1 4

.

1a. Find the eigenvalues of A.[10]

λ1 = 4 + i, λ2 = 4− i.

Find roots of quadratic equation:

det(A− λI) = (4− λ)(4− λ)− (−1) = λ2 − 8λ+ 17 = 0.

1b. Find an eigenvector for each eigenvalue of A.[10]

x1 =

 −i
1

, x2 =

 i

1

.

 −i 1

−1 −i


︸ ︷︷ ︸

(A−λ1I)

 −i
1


︸ ︷︷ ︸

x1

=

 0

0

.
 i 1

−1 i


︸ ︷︷ ︸

(A−λ2I)

 i

1


︸ ︷︷ ︸
x2

=

 0

0

.



1c. Compute xH1x2.[10]
(Note: x1 and x2 are the complex eigenvectors that you obtained in 1b.)

xH1x2 = 0.



2. Let A =

 −2 1

0 0

.

2a. Find an invertible matrix S that makes S−1AS a diagonal matrix.[12]

S =

 1 1/2

0 1

.

The diagonal entries of A are its eigenvalues.

The columns of S are the eigenvectors of A for λ1 = −2, λ2 = 0.



2b. For the differential equation du
dt

= Au, give a nonzero initial vector u(0) such[10]

that u(t)→

 0

0

 as t→∞.

u(0) =

 1

0

, or any nonzero multiple of it.

u(t) = c1e
λ1tx1 + c2e

λ2tx2 = c1e
−2t

 1

0

+ c2

 1/2

1

.
Choose c2 = 0 and c1 6= 0 for initial vector to approach

 0

0

 as t→∞.



3. Fill in the matrix A =

 0.5 a12

a21 a22

 so that A is a positive Markov matrix with the[16]

steady state vector x1 =

 0.25

0.75

.
(Recall that the limit of Aku0 is always a multiple of x1.)

A =

 1/2 1/6

1/2 5/6

.

The first column of A adds to 1 when a21 = 1/2.

Next, we solve A =

 1/2 a12

1/2 a22


 1/4

3/4

 =

 1/4

3/4

 for the second column of A.

Along the first row: (1/8) + (3/4)a12 = 1/4, which gives a12 = 1/6.
The second column of A adds to 1 for a22 = 5/6.
Observe that the steady state vector satisfies Ax1 = (1)x1.



4. Each independent question refers to the matrix A =

 4 1

d −4

.
In each case, find the value of d that makes the statement true (and show your work!).

4a. Give a value for d such that

 5

1

 is an eigenvector of A.[10]

d = 41/25.

 4 1

d −4


 5

1

 =

 21

5d− 4

 = (21/5)

 5

1

.
In the second component, solve 5d− 4 = (21/5) for d.

4b. Give a value for d such that 2 is one of the eigenvalues of A.[10]

d = −12.

When 2 is an eigenvalue of A,

A− 2I =

 2 1

d −6

 must have linearly dependent columns.



4c. Give a value for d such that A is a nondiagonalizable matrix.[12]

Recall that A =

 4 1

d −4

.

d = −16.

The issue of nondiagonalizability only comes up for a matrix that has some

repeated eigenvalues.

In this case, 0 is a twice repeated eigenvalue of A when d = −16.
The eigenvalue is repeated twice, but we only find one linearly independent

eigenvector (via the special solution to (A− 0I)x =

 0

0

).


