Recitation 6. October 22

Focus: linear transformations and matrix representations, determinants

A linear transformation is a map $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that for any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$,

$$
\phi(\boldsymbol{v}+\boldsymbol{w})=\phi(\boldsymbol{v})+\phi(\boldsymbol{w}) \quad \text { and } \quad \phi(\alpha \boldsymbol{v})=\alpha \phi(\boldsymbol{v}) .
$$

A linear transformation ϕ can be expressed as a matrix A, with respect to given bases $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ of \mathbb{R}^{n} and $\left\{\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{m}\right\}$ of \mathbb{R}^{m} : the (i, j) entries $a_{i j}$ of A are such that $\phi\left(\boldsymbol{v}_{k}\right)=a_{1 k} \boldsymbol{w}_{1}+\cdots+a_{m k} \boldsymbol{w}_{m}$.

The determinant of an $n \times n$ matrix A is the factor by which the linear map $\boldsymbol{v} \mapsto A \boldsymbol{v}$ scales volumes of regions in $\mathbb{R}^{n} ;$ it is denoted $\operatorname{det} A$.

1. Determine whether the following maps are linear. If so, find a matrix representation of the map in terms of the standard basis of \mathbb{R}^{3}, and then find a matrix representation in terms of the basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
(a) $\phi\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y+z \\ x^{2}+y^{2}+z^{2} \\ 0\end{array}\right]$.
(b) Let $\boldsymbol{a}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right] \in \mathbb{R}^{3}$, and define $\psi(\boldsymbol{v})=(\boldsymbol{a} \cdot \boldsymbol{v}) \boldsymbol{a}$.
(c) $\sigma\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x-y-z \\ x+2 y \\ y-3 z\end{array}\right]$.

Solution:

(a) ϕ is not linear. For instance, $\phi\left(\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 4 \\ 0\end{array}\right]$ but $2 \phi\left(\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2 \\ 0\end{array}\right]$.
(b) ψ is linear. Indeed, for any $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{R}^{3}$ and $\alpha, \beta \in \mathbb{R}$, we have

$$
\psi(\alpha \boldsymbol{v}+\beta \boldsymbol{w})=(\boldsymbol{a} \cdot(\alpha \boldsymbol{v}+\beta \boldsymbol{w})) \boldsymbol{a}=(\alpha(\boldsymbol{a} \cdot \boldsymbol{v})+\beta(\boldsymbol{a} \cdot \boldsymbol{w})) \boldsymbol{a}=\alpha(\boldsymbol{a} \cdot \boldsymbol{v}) \boldsymbol{v}+\beta(\boldsymbol{a} \cdot \boldsymbol{w})=\alpha \phi(\boldsymbol{v})+\beta \phi(\boldsymbol{w}) .
$$

In terms of the standard basis, the matrix representation is

$$
X=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

(c) σ is linear. Indeed, clearly

$$
\sigma\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 2 & 0 \\
0 & 1 & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

so by the linearity of matrix multiplication σ is linear. Moreover, we see that $Y=\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & -3\end{array}\right]$ is therefore also the matrix representation of σ in terms of the standard basis.
To find the matrix representations of (b) and (c) in terms of the basis $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$, consider

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]
$$

We can compute that

$$
A^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right]
$$

Then in terms of $\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}, \psi$ is $A^{-1} X A$ and σ is $A^{-1} Y A$. Explicitly,

$$
A^{-1} X A=\frac{1}{4}\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2}
\end{array}\right]
$$

and
$A^{-1} Y A=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & -3\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}1 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}2 & 0 & 0 \\ -1 & 2 & 1 \\ -1 & 4 & -3\end{array}\right]=\left[\begin{array}{ccc}2 & -3 & 1 \\ 1 & -1 & 2 \\ 0 & 3 & -1\end{array}\right]$.
2. Compute the determinant of

$$
M=\left[\begin{array}{cccc}
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2 \\
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5
\end{array}\right]
$$

by using row operations.

Solution: We first swap the first and third rows, and then the second and fourth rows to arrive at the matrix

$$
M^{\prime}=\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right]
$$

Therefore $\operatorname{det} M=(-1)^{2} \operatorname{det} M^{\prime}=\operatorname{det} M^{\prime}$. We now perform elimination operations on M^{\prime} :

$$
\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
-1 & 3 & 0 & 5 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 6 & -1 & 7 \\
0 & 0 & 2 & -1 \\
0 & 0 & -4 & -2
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 3 & -1 & 2 \\
0 & 6 & -1 & 7 \\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & -4
\end{array}\right],
$$

which shows $\operatorname{det}\left(M^{\prime}\right)=1 \cdot 6 \cdot 2 \cdot(-4)=-48$. Thus $\operatorname{det} M=-48$. Note that

$$
\operatorname{det} M=\operatorname{det}\left(\left[\begin{array}{cc}
1 & 3 \\
-1 & 3
\end{array}\right]\right) \operatorname{det}\left(\left[\begin{array}{cc}
2 & -1 \\
-4 & -2
\end{array}\right]\right) .
$$

Indeed, it is true in general (and can be seen by row operation, for instance) that if a matrix is of the form $\left[\begin{array}{cc}A & B \\ 0 & C\end{array}\right]$, then its determinant is $\operatorname{det}(A) \operatorname{det}(C)$.
3. Compute the determinant of

$$
B=\left[\begin{array}{cccc}
1 & 2 & -1 & 0 \\
3 & -2 & 0 & 5 \\
-2 & 0 & -2 & 1 \\
1 & 0 & -1 & 4
\end{array}\right]
$$

by doing a cofactor expansion along its second row.

Solution: We have that $\operatorname{det} B$ equals

$$
\begin{aligned}
& (-1)^{2+1} \cdot 3 \operatorname{det}\left(\left[\begin{array}{lll}
2 & -1 & 0 \\
0 & -2 & 1 \\
0 & -1 & 4
\end{array}\right]\right)+(-1)^{2+2} \cdot(-2) \operatorname{det}\left(\left[\begin{array}{ccc}
1 & -1 & 0 \\
-2 & -2 & 1 \\
1 & -1 & 4
\end{array}\right]\right)+(-1)^{2+4} \cdot 5 \operatorname{det}\left(\left[\begin{array}{ccc}
1 & 2 & -1 \\
-2 & 0 & -2 \\
1 & 0 & -1
\end{array}\right]\right)= \\
& -3(2((-2)(4)-(-1)))-2(((-2)(4)-(-1))+((-2)(4)-1))+5((-1)(2)((-2)(-1)-(-2)))=42+32-40=34
\end{aligned}
$$

So, $\operatorname{det} B=34$.

