| 18.06 | Professor Edelman | Final Exam | December 20, 2012 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Grading | | | |

1 (10 pts.)

What condition on b makes the equation below solvable? Find the complete solution to \mathbf{x} in the case it is solvable.

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
2 & 6 & 4 & 8 \\
0 & 0 & 2 & 4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
1 \\
3 \\
b
\end{array}\right) .
$$

Solution:
Let's use Gaussian elimination. Starting from

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
2 & 6 & 4 & 8 \\
0 & 0 & 2 & 4
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
3 \\
b
\end{array}\right)
$$

multiply both sides by the elementary matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on the left, which has the effect of subtracting twice the first row from the second:

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 2 & 4
\end{array}\right) \mathbf{x}=\left(\begin{array}{l}
1 \\
1 \\
b
\end{array}\right)
$$

Then multiply both sides by the elementary matrix $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right)$ on the left, which has the effect of subtracting the second row from the third:

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \mathbf{x}=\left(\begin{array}{c}
1 \\
1 \\
b-1
\end{array}\right)
$$

Comparing the third row on both sides, we find that $0=b-1$. The first and second rows of the matrix on the left-hand side both have pivots, so there are no other restrictions. The equation is solvable precisely when $b=1$. Let us solve it in this case.

The free variables are x_{2} and x_{4}. To find a particular solution to the equation at hand, set both free variables to zero, and solve for the pivot variables; we get $\mathbf{x}=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)$. To find the complete solution, we must solve the homogeneous equation

$$
\left(\begin{array}{llll}
1 & 3 & 1 & 2 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \mathbf{x}=\mathbf{0}
$$

The two special solutions to this homogeneous equation are found by setting one of the free variables to 1 , the other to 0 : we get $(-3,1,0,0)$ and $(0,0,-2,1)$. Therefore, the complete solution to the original equation when $b=1$ is

$$
\mathbf{x}=\left(\begin{array}{c}
\frac{1}{2}-3 x_{2} \\
x_{2} \\
\frac{1}{2}-2 x_{4} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
0 \\
-2 \\
1
\end{array}\right) .
$$

2 (6 pts.)

Let C be the cofactor matrix of an $n \times n$ matrix A. Recall that C satisfies $A C^{T}=(\operatorname{det} A) I_{n}$. Write a formula for $\operatorname{det} C$ in terms of $\operatorname{det} A$ and n.

Solution:
Since $A C^{T}=(\operatorname{det} A) I_{n}$, we get $\operatorname{det}\left(A C^{T}\right)=\operatorname{det}\left((\operatorname{det} A) I_{n}\right)$. The left hand side simplifies to $\operatorname{det} A \operatorname{det} C$ and the right hand side is equal $(\operatorname{det} A)^{n}$. This gives $\operatorname{det} C=(\operatorname{det} A)^{n-1}$.

The conscientious may object that we have divided both sides of the equation $\operatorname{det} A \operatorname{det} C=$ $(\operatorname{det} A)^{n}$ by $\operatorname{det} A$, which is invalid if $\operatorname{det} A=0$. So we still have to prove that, if $\operatorname{det} A=0$, then C must also be singular. Well, assume for the sake of contradiction that $\operatorname{det} A=0$ but C is invertible. Then C^{T} is also invertible, and we may multiply the original equation $A C^{T}=(\operatorname{det} A) I_{n}$ by $\left(C^{T}\right)^{-1}$:

$$
A=(\operatorname{det} A)\left(C^{T}\right)^{-1}=0\left(C^{T}\right)^{-1}=0
$$

So A is the zero matrix, but in this case obviously so is its cofactor matrix C. This contradiction shows that indeed $\operatorname{det} C=(\operatorname{det} A)^{n-1}$ in all cases.

3 (25 pts.)

The matrix $A=\left(\begin{array}{rrr}5 & 2 & -1 \\ 2 & 2 & 2 \\ -1 & 2 & 5\end{array}\right)$ satisfies $A^{2}=6 A$.
(a) (4 pts.) The eigenvalues of A are $\lambda_{1}=$ \qquad , $\lambda_{2}=$ \qquad , and $\lambda_{3}=$
(b) (5 pts) Find a basis for the nullspace of A and the column space of A.
(c) (16 pts.) Circle all that apply. The matrix $M=\frac{1}{6} A$ is

1.orthogonal
3. a projection
5. singular
7. a Fourier matrix

2. symmetric
3. a permutation
4. Markov
5. positive definite

4 (12 pts.)

The matrix $G=\left(\begin{array}{rrrr}-1 & 1 & 1 & 1 \\ 1 & -2-i & -1 & i \\ 1 & -1 & -1 & -1 \\ 1 & i & -1 & -2-i\end{array}\right)$, where $i=\sqrt{-1}$.
(a) (6 pts) Use elimination or otherwise to find the rank of G.
(b) (6 pts) Find a real nonzero solution to $\frac{d}{d t} x(t)=G x(t)$.

5 (12 pts.)

Given a vector x in \mathbb{R}^{n}, we can obtain a new vector $y=\operatorname{cumsum}(x)$, the cumulative sum, by the following recipe:

$$
\begin{gathered}
y_{1}=x_{1} \\
y_{j}=y_{j-1}+x_{j}, \text { for } j=2, \ldots, n .
\end{gathered}
$$

(a) (7 pts) What is the Jordan form of the matrix of this linear transformation?

Solution:
Let's first find the matrix A representing the linear transformation cumsum, and then worry about finding the Jordan form of A. Note that cumsum maps $(1,0, \ldots, 0)$ to $(1,1, \ldots, 1)$, so the first column of A should be $(1,1, \ldots, 1)$. The other columns of A can be found in a similar way, and

$$
A=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
1 & 1 & 1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
1 & 1 & 1 & \cdots & 1 & 0 \\
1 & 1 & 1 & \cdots & 1 & 1
\end{array}\right]
$$

If $n=1$, then A is already in Jordan form. So, for the rest of this solution, let's assume $n \geqslant 2$.

To find the Jordan form of A, let's first find its eigenvalues. We see that A is a lower triangular matrix, so its eigenvalues are just its diagonal entries, which are all equal to 1 . Thus, 1 is the only eigenvalue of A, and it occurs with arithmetic multiplicity n. This fact alone is not enough to determine the Jordan form of A, however. In fact, there are $p(n)$ non-similar $n \times n$ matrices whose only eigenvalue is 1 , where $p(n)$ denotes the number of partitions of n - the number of distinct ways of writing n as a sum of positive integers, if order is irrelevant. Of the $p(n)$ possible distinct Jordan forms of such matrices, which one is actually the Jordan form of A ?

One possibility that we can immediately eliminate is the identity matrix I_{n}. The only matrix similar to I_{n} is I_{n} itself: $M I_{n} M^{-1}=I_{n}$ for any invertible matrix M. Since A isn't the identity matrix, it isn't similar to I_{n} either, and its Jordan form is not I_{n}.

The key is to consider $A-I_{n}$: this matrix has rank $n-1$, because (for example) its transpose is in row-echelon form with $n-1$ pivots. Thus, $A-I_{n}$ has a 1-dimensional kernel, which is to say A has a 1-dimensional eigenspace for the eigenvalue 1 . This means that the Jordan form of A consists of a single Jordan block, which must therefore be

$$
\left[\begin{array}{llllll}
1 & 1 & & & & \\
& 1 & 1 & & & \\
& & 1 & \ddots & & \\
& & & \ddots & 1 & \\
& & & & 1 & 1 \\
& & & & & 1
\end{array}\right]
$$

(the empty entries are zeroes).
(b) (5 pts) For every n,find an eigenvector of cumsum.

Solution:
An eigenvector for A is the same thing as a vector in the nullspace of

$$
A-I_{n}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 1 & \cdots & 1 & 0 & 0 \\
1 & 1 & \cdots & 1 & 1 & 0
\end{array}\right]
$$

Row operations or mere inspection quickly leads to the conclusion that only the nth column is free, while all other columns have pivots. So all eigenvectors for A are scalar multiples of $(0, \ldots, 0,1)$. It is easy to check that $(0, \ldots, 0,1)$ is unchanged by the transformation cumsum, so this makes sense.

6 (20 pts.)

This problem concerns matrices whose entries are taken from the values +1 and -1 . In other words, the general form of this matrix is $\left(\begin{array}{cccc} \pm 1 & \pm 1 & \ldots & \pm 1 \\ \pm 1 & \pm 1 & \ldots & \pm 1 \\ \vdots & \vdots & \ddots & \\ \pm 1 & \pm 1 & \ldots & \pm 1\end{array}\right)$. We will call these matrices ± 1 matrices.
One $3 x 3$ example of such a matrix is $\left(\begin{array}{rrr}1 & -1 & 1 \\ -1 & -1 & -1 \\ -1 & 1 & 1\end{array}\right)$.
a) (5 pts .) Find a two by two example of a ± 1 matrix with eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=0$ or prove it is impossible.
b) (5 pts .) Suppose A is a 10×10 example of a ± 1 matrix. Compute $\sigma_{1}^{2}+\sigma_{2}^{2}+\ldots+\sigma_{10}^{2}$
c) (5 pts.) The big determinant formula for a $5 \times 5 A$ has exactly \qquad terms. A computer package for matrices computes that the determinant of a ± 1 matrix that is 5×5 is an odd integer. If this is possible exhibit such a ± 1 matrix, if not argue clearly why the package must not be giving the right answer for this 5×5 matrix.
d) (5 pts.) For every n, construct a ± 1 matrix A_{n} with ($n-1$) eigenvalues exactly equal to 2. (Hint: Think about $A_{n}-2 I$.)

7 (15 pts.)

Let V be the six dimensional vector space of functions $f(x, y)$ of the form $a x^{2}+b x y+$ $c y^{2}+d x+e y+f$. Let W be the three dimensional vector space of (at most) second degree quadratics in x.
a) (6 pts.) Write down a basis for V and a basis for W.

Solution:
A basis for V is $1, x, y, x y, x^{2}, y^{2}$. A basis for W is $1, x, x^{2}$.
b (9 pts.) In your chosen basis, what is the matrix of the linear transformation from V to W that takes $f(x, y)$ to $g(x)=f(x, x)$?

Recall that the i th column of the matrix simply describes the image of the i th basis vector of V as a linear combination of the basis vectors of W. Therefore, the transformation is represented by

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right)
$$

