Solution Set 9, 18.06 Fall '11

1. Do Problem 5 from 8.3. Surprising?

Solution. Let $A=\left(\begin{array}{ccc}0.98 & 0 & 0 \\ 0.02 & 0.97 & 0 \\ 0 & 0.03 & 1\end{array}\right)$. Since A is a lower triangular matrix, its eigenvalues are its diagonal entries, namely, $0.98,0.97$ and 1 . The steady state of this system is the eigenvector \mathbf{x} corresponding to the eigenvalue 1 . From

$$
\left(\begin{array}{ccc}
0.98-1 & 0 & 0 \\
0.02 & 0.97-1 & 0 \\
0 & 0.03 & 1-1
\end{array}\right) \mathrm{x}=0
$$

we get $\mathbf{x}=[0,0,1]^{T}$, i.e. everyone will be dead eventually. Not quite surprising.
2. Do Problem 12 from 8.3.

Solution. The eigenvalues of B are $\lambda_{1}=0$ and $\lambda_{2}=-0.5$ if you solve

$$
\operatorname{det}(B-\lambda I)=(-0.2-\lambda)(-0.3-\lambda)-0.3 \cdot 0.2=\lambda(\lambda+0.5)=0 .
$$

Note that A always has eigenvalue 1 so $\operatorname{det}(B)=\operatorname{det}(A-I)=0$. Thus, B always has eigenvalue 0 .
The corresponding eigenvectors are $\mathbf{x}_{1}=[0.3,0.2]^{T}$ and $\mathbf{x}_{2}=[-1,1]^{T}$ and the solution to the given Markov differential equation is

$$
c_{1} e^{0 \cdot t} \mathbf{x}_{1}+c_{2} e^{-0.5 t} \mathbf{x}_{2}=c_{1} \mathbf{x}_{1}+c_{2} e^{-0.5 t} \mathbf{x}_{2}
$$

As $t \rightarrow \infty, e^{-0.5 t}$ converges to zero so the steady state is $c_{1} \mathbf{x}_{1}$.

3. Do Problem 3 from 6.3.

Solution. (a) If every column of A adds to zero, then every row of A^{T} adds to zero, meaning $A^{T}[1,1, \ldots, 1]^{T}=0$. This implies $\operatorname{det}\left(A^{T}\right)=0$ and, hence, $\operatorname{det}(A)=0$.
(b) The eigenvalues of $\left(\begin{array}{cc}-2 & 3 \\ 2 & -3\end{array}\right)$ are $\lambda_{1}=0$ and $\lambda_{2}=-5$ and the corresponding eigenvectors are $\mathbf{x}_{1}=[3,2]^{T}$ and $\mathbf{x}_{2}=[-1,1]^{T}$. Hence, the general solution of this equation is

$$
\mathbf{u}(t)=C_{1} e^{0 \cdot t}[3,2]^{T}+C_{2} e^{-5 t}[-1,1]^{T}=\left[3 C_{1}-C_{2} e^{-5 t}, 2 C_{1}+C_{2} e^{-5 t}\right]^{T} .
$$

From $\mathbf{u}(0)=[4,1]^{T}$, we have

$$
\begin{aligned}
& 3 C_{1}-C_{2}=4 \\
& 2 C_{1}+C_{2}=1
\end{aligned}
$$

and, hence, $C_{1}=1, C_{2}=-1$. This gives us the solution

$$
\mathbf{u}(t)=\left[3+e^{-5 t}, 2-e^{-5 t}\right]^{T} .
$$

The steady state $\mathbf{u}(\infty)$ is $[3,2]^{T}$ since $e^{-5 t} \rightarrow 0$ as $t \rightarrow \infty$.

4. Do Problem 4 from 6.3.

Solution.

$$
\frac{d(v+w)}{d t}=\frac{d v}{d t}+\frac{d w}{d t}=(w-v)+(v-w)=0 .
$$

This implies that $v+w$ remains constant. Let $\mathbf{u}=[v, w]^{T}$ then

$$
\frac{d \mathbf{u}}{d t}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right) \mathbf{u} .
$$

Hence, $A=\left(\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right)$. Solving $\operatorname{det}(A-\lambda I)=(-1-\lambda)^{2}-1=\lambda(\lambda+2)=0, A$ has eigenvalues $\lambda_{1}=0$ and $\lambda_{2}=-2$. Corresponding eigenvectors are $\mathbf{x}_{1}=[1,1]^{T}$, $\mathbf{x}_{2}=[1,-1]^{T}$. The geeneral solution has the form

$$
\mathbf{u}(t)=C_{1} \mathbf{x}_{1}+C_{2} e^{-2 t} \mathbf{x}_{2}
$$

From $\mathbf{u}(0)=[30,10]^{T}$, we get $C_{1}=20, C_{2}=10$ and the solution is

$$
\mathbf{u}(t)=\left[20+10 e^{-2 t}, 20-10 e^{-2 t}\right]^{T}
$$

Hence, $[v(1), w(1)]^{T}=\left[20+10 e^{-2}, 20-10 e^{-2}\right]^{T},[v(\infty), w(\infty)]^{T}=[20,20]^{T}$

5. Do Problem 5 from 6.3.

Solution. The eigenvalues of $-A=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ are 0 and 2. (These are the negatives of the eigenvalues of A.) The solution of the equation in this case is

$$
\mathbf{u}(t)=\left[20+10 e^{2 t}, 20-10 e^{2 t}\right]^{T},
$$

and, hence $v(\infty)=\lim _{t \rightarrow \infty} 20+10 e^{2 t}$ diverges to ∞.
6. Do Problem 8 from 6.4.

Solution. If λ is an eigenvalue of A, then $0=A^{3} x=\lambda^{3} \mathbf{x}$ for nonzero eigenvector \mathbf{x} so $\lambda=0$. Hence, all eigenvalues of A must be zero. For example, $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ gives $A^{3}=0$.
On the other hand, if A is symmetric, then A has a diagonalization $A=Q \Lambda Q^{T}$. Then, $A^{3}=Q \Lambda^{3} Q^{T}=0$ and this implies $\Lambda^{3}=0$ since Q is invertible. Hence, $\Lambda=0$ and $A=0$.
7. Do problem 10 from 6.4.

Solution. We cannot assume that we have a real eigenvector \mathbf{x}. If \mathbf{x} is not real, then $\mathbf{x}^{T} \mathbf{x}$ can vanish for nonzero \mathbf{x} so we cannot divide by $\mathbf{x}^{T} \mathbf{x}$. For instance, for $\mathbf{x}=[i, 1]^{T}, \mathbf{x}^{T} \mathbf{x}=0$.
8. Do Problem 20 from 6.4 (in some sense, this is the cornerstone of quantum mechanics).

Solution. $A=\left(\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right)$ is an example of a 2×2 Hermitian matrix.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1+i \\
1-i & -1-\lambda
\end{array}\right)=\lambda^{2}-3
$$

thus the eigenvalues are $\sqrt{3},-\sqrt{3}$, which are real.
To prove that the eigenvalues of any Hermitian matrix A are real, let λ be an eigenvalue of A and \mathbf{x} be a corresponding eigenvector.

$$
\begin{aligned}
& A \mathbf{x}=\lambda \mathbf{x} \\
\Rightarrow & \bar{A} \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}} \\
\Rightarrow & A^{T} \overline{\mathbf{x}}=\bar{\lambda} \overline{\mathbf{x}} \\
\Rightarrow & \overline{\mathbf{x}}^{T} A=\bar{\lambda} \overline{\mathbf{x}}^{T} \\
\Rightarrow & \overline{\mathbf{x}}^{T} A \mathbf{x}=\bar{\lambda} \overline{\mathbf{x}}^{T} \mathbf{x}
\end{aligned}
$$

On the other hand, if we take the inner product with \mathbf{x} on each side of the first equation, we get

$$
\overline{\mathbf{x}}^{T} A \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x}
$$

Hence, $\bar{\lambda} \overline{\mathbf{x}}^{T} \mathbf{x}=\lambda \overline{\mathbf{x}}^{T} \mathbf{x}$ and $\bar{\lambda}=\lambda$, i.e. λ is real. (Note that $\overline{\mathbf{x}}^{T} \mathbf{x}$ is not zero for nonzero x.)
9. Let $J=\left(\begin{array}{cccc}0.4 & 0.2 & 0.2 & 0.3 \\ 0.4 & 0.5 & 0.3 & 0.5 \\ 0.1 & 0.2 & 0.1 & 0.1 \\ 0.1 & 0.1 & 0.4 & 0.1\end{array}\right)$. This Markov matrix describes surfing behavior in a universe with only four web pages. The (i.j) entry is the probablity that your next browser experience is site i, given that you are currently on j. Note that you can return to the same site again. Using a computer, rank the four web pages in order using the steady state. (you can play with different numbers and consider whether this "pagerank" matches your intuition).

Solution. [See MATLAB code]
10. Let A be a fixed 2×2 matrix. Show that all the solutions u to $u^{\prime}=A u$ form a subspace of the (very big) vector space W of functions $\binom{f_{1}(t)}{f_{2}(t)}$ (you do not need to show that this space of functions is a vector space, but it is good practice to convince yourself). Let V be the subspace of W where each of the $f_{i}(t)$ above are linear combinations of exponential functions. Give an example of an A where the solutions to $u^{\prime}=A u$ form a subspace of V (hint: this should be true for most A).

Solution. First of all, $u=0$ is a solution to $u^{\prime}=A u$. If u_{1}, u_{2} are two solutions of $u^{\prime}=A u$, then $\left(c u_{1}\right)^{\prime}=c u_{1}^{\prime}=A\left(c u_{1}\right)$ and $\left(u_{1}+u_{2}\right)^{\prime}=u_{1}^{\prime}+u_{2}^{\prime}=A u_{1}+A u_{2}=$ $A\left(u_{1}+u_{2}\right)$ so $c u_{1}$ and $u_{1}+u_{2}$ are also solutions of $u^{\prime}=A u$. Hence, all the solutions of $u^{\prime}=A u$ form a subspace.
For the second part of the problem, take $A=I$, then all the solutions to $u^{\prime}=u$ have the form

$$
\binom{C e^{t}}{D e^{t}},
$$

so this is a subspace of V.

MATLAB code

\%\%\%\%\%\%\%\%\%\%\%\%
\%Problem 9\%
\%\%\%\%\%\%\%\%\%\%\%\%\%

```
J=[.4 .2 .2 .3;.3 .5 .3 .5;.1 .2 .1 .1;.1 .1 .4 .1]
J =
\begin{tabular}{llll}
0.4000 & 0.2000 & 0.2000 & 0.3000 \\
0.3000 & 0.5000 & 0.3000 & 0.5000 \\
0.1000 & 0.2000 & 0.1000 & 0.1000 \\
0.1000 & 0.1000 & 0.4000 & 0.1000
\end{tabular}
sum(J)
ans =
    0.9000 1.0000 1.0000 1.0000
J=[.4 .2 .2 .3;.4 .5 .3 .5;.1 .2 .1 .1;.1 .1 .4 .1]
J =
    0.4000 0.2000 0.2000 0.3000
```

```
\begin{tabular}{llll}
0.4000 & 0.5000 & 0.3000 & 0.5000 \\
0.1000 & 0.2000 & 0.1000 & 0.1000 \\
0.1000 & 0.1000 & 0.4000 & 0.1000
\end{tabular}
sum(J)
ans =
    1.0000
            1.0000
            1.0000
        1.0000
[U,D]=eig(J)
U =
    Columns 1 through 3
        0.4807 -0.8593 0.2446 + 0.1444i
        0.7972 0.3021
        0.2592 0.1918
        0.2572
                            0.3654
    Column 4
        0.2446 - 0.1444i
        0.4376 - 0.1951i
        0.0723 + 0.3395i
    -0.7545
D =
    Columns 1 through 3
        1.0000 0
        0 0.1575
        0
        0
            0.1575
                        0
        -0.0287 + 0.1350i
        0
        Column 4
            0
            0
            0
    -0.0287-0.1350i
U(: , 1)
```

```
ans =
    0.4807
    0.7972
    0.2592
    0.2572
```

 \([u, i]=\operatorname{sort}(U(:, 1)\), descend')
 u =
 0.7972
 0.4807
 0.2592
 0.2572
 i =
 2
 1
 3
 4
 \% Ranking is 2,1,3,4
 \% Note the second row clearly has a lot of weight
\% followed by the first row

