
18.06 (Fall ’11) Problem Set 10

This problem set is due Monday, November 28, 2011 at 4pm. The problems are out of the
4th edition of the textbook. For computational problems, please include a printout of the
code with the problem set (for MATLAB in particular, diary(“filename”) will start a
transcript session, diary off will end one.)

1. Do Problem 20 from 6.5.

Solution. (a) A positive definite matrix is invertible: Because it has positive eigen-
values, so zero is not an eigenvalue.

(b) The only positive definite projection matrix is P = I because: Let V be the
subspace that P projects on, i.e. the range of the map P . If its orthogonal
complement V ⊥ = {0}, then P = I. If V ⊥ 6= {0}, then any non-zero element
v ∈ V ⊥ satisfies Pv = 0, v 6= 0 and hence P is not invertible. Then see (a).

(c) There are two reasons a diagonal matrix with positive diagonal entries is pos-
itive definite, not to forget: 1) Diagonal matrices are symmetric, and 2) The
eigenvalues of a diagonal matrix are the diagonal entries.

(d) A symmetric matrix with a positive determinant might not be positive definite:
For example the 2× 2 example det(−I2) = (−1)2 det(I2) = 1 > 0 shows this.

2. Compute the cube root (i.e. find D such that D3 = A) for the positive definite

symmetric square matrix A =

[
5 4
4 5

]
.

Solution. We diagonalize this symmetric matrix A and get:

A = MΛM−1 =

[
1 1
−1 1

] [
1 0
0 9

] [
1/2 −1/2
1/2 1/2

]
[Note that for our application, needing a cube root D such that D3 = A it is not
necessary to divide by

√
2’s to make the M into an orthogonal Q]. Namely, we see

that (MΛ1/3M−1)3 = MΛM−1 = A. So we just get:

D =

[
1 1
−1 1

] [
1 0

0 91/3

] [
1/2 −1/2
1/2 1/2

]
=

[
91/3+1

2
91/3−1

2
91/3−1

2
91/3+1

2

]
.

3. Do Problem 5 from 6.6.

Solution. We first list the eigenvalues of all the matrices, they are respectively: (1, 1),
(1,−1), (0, 1), (0, 1), (0, 1) and (0, 1). Since similar matrices have the same eigenvalues
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(with same algebraic and geometric multiplicities too), the only ones in this list that
have a chance of being similar are the last four matrices.

Now, since the last four each have two different eigenvalues, we know they are all
diagonalizable. The diagonal matrix is the same Λ, with diagonals 0 and 1. Since
the last four are thus all similar to the same matrix Λ, all four are similar to each
other.

4. Do Problem 17 from 6.6.

Solution. (a) False, a symmetric matrix can easily be similar to a nonsymmetric
one. Here’s a pair of good reasons:

TAT−1 =

[
1 0
1 1

] [
0 1
1 0

] [
1 0
1 1

]−1
=

[
−1 1
0 1

]
.

(b) True. If a matrix A is similar to a matrix B, then detA = detB. So A is
singular if and only B is singular.

(c) False. −A = TAT−1 happens precisely when AT + TA = 0 (given that T is
invertible).
So, as a good reason we should find such a pair that "anti-commute". Famous
examples are the Pauli matrices from Quantum Mechanics1, usually denoted by
σ’s. Here are two of them (and they are invertible):

σ1 =

[
0 1
1 0

]
and σ3 =

[
1 0
0 −1

]
, with σ1σ3 + σ3σ1 =

[
0 0
0 0

]
.

(d) True, A can never be similar to A + I. Remember that the trace is also an
invariant under similarity since tr(TAT−1) = tr((AT−1)T ) = tr(A) follows from
the tr(AB) = tr(BA) property. But if A is n× n then:

tr(A+ In) = tr(A) + tr(In) = tr(A) + n 6= tr(A).

5. Do Problem 22 from 6.6.

Solution. Jordan form: The first hint says to show that (Jn[0])n = 0, where Jn is a
Jordan block of size n of eigenvalue 0. Recall that when we take powers of such
a matrix, the non-zero elements "move further into the top right corner".
To be more precise, as we must, let’s introduce a notion: Let k be some
integer. Assume an n × n matrix A has the property that Aij = 0 whenever
i + k > j. Then let’s invent the word that A is "k-cornered". Notice that an

1Historically, a discipline initially known as "Matrix Mechanics"!

2



upper diagonal matrix is 0-cornered, and that if an n × n matrix is k-cornered
for some k ≥ n, then it is truly cornered up and must be the zero matrix 2.
Claim: If k ≥ 1, the product of two k-cornered matrices A and B is (k + 1)-
cornered.
To prove it, we take two such A, B and compute their product:

(AB)ij =
n∑

s=1

AisBsj .

Fix n, k and i, j. Is it true, as the claim says, that (AB)ij = 0 if the condition
i+ k + 1 > j holds?
Indeed it is, for using that Ais = 0 when i+k > s and Bsj = 0 when s+k > j, we
see that some term Ais0Bs0j (happening for some s0{1, . . . , n}) can be non-zero
only if both i+k ≤ s0 and also s0+k ≤ j. But combining these two requirements
gives i + k ≤ j − k ≤ j − 1, using k ≥ 1. But this says that i + k + 1 ≤ j,
violating the condition i + k + 1 > j we were assuming for these fixed i, j, k.
Thus no such s0 may happen, and therefore the whole sum is also zero for these
i, j: (AB)ij = 0 when i+ k + 1 > j.
Consequence of claim: A Jordan block Jn of size n and with eigenvalue 0 satisfies
(Jn)n = 0. Namely, Jn is 1-cornered, (Jn)2 is 2-cornered etc., so (Jn)n is an n-
cornered n× n matrix, hence is the zero matrix.
Now, let A be any matrix with all eigenvalues being λi = 0. Let s ∈ {1, . . . , n}
denote the number of independent eigenvectors. We then use Jordan’s theorem
A = MJM−1, where

J =

Jn(1) . . .
Jn(s)

 ,
and each block is a Jordan block of size 1 ≤ n(i) ≤ n, i = 1, . . . , s of eigenvalue
0. Since

Jn =

(Jn(1))
n

. . .
(Jn(s))n

 = 0,

and An = MJnM−1, we are done.

Cayley-Hamilton: Since all n eigenvalues are 0, the characteristic polynomial must
be P (λ) = (λ− 0)n = λn. By Cayley-Hamilton, P (A) = 0, so An = 0.

6. What are the singular values of an n by n Jordan block with eigenvalue 0? In MAT-
LAB A = gallery(’jordbloc’, n, e) creates a Jordan block of size n and eigen-
value e.

2Since then i+ k ≥ i+ n > j holds for every pair i, j ∈ {1, . . . , n}, so every entry is zero.
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Solution. Let Jn be a Jordan block with eigenvalue 0. In general we get:

(Jn)TJn =


0

1
. . .

1

 .
Hence any Jordan block of size n ≥ 2 and eigenvalue 0 has the n singular values
1, . . . , 1, 0 (it is not enough to just say "0 and 1"!).

7. Do Problem 6 from 6.7.

Solution.

ATA =

1 1 0
1 2 1
0 1 1

 , and AAT =

[
2 1
1 2

]
.

Diagonalizing ATA, we get:

ATA = V Λ1V
T =

1/
√

6 1/
√

2 1/
√

3

2/
√

6 0 −1/
√

3

1/
√

6 −1/
√

2 1/
√

3

3 0 0
0 1 0
0 0 0

1/
√

6 1/
√

2 1/
√

3

2/
√

6 0 −1/
√

3

1/
√

6 −1/
√

2 1/
√

3

T

,

AAT = UΛ2U
T

[
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

] [
3 0
0 1

] [
1/
√

2 1/
√

2

1/
√

2 −1/
√

2

]T
,

where we have fixed a V , then chosen the signs of the columns in U in such a way
that AU = V Σ indeed works, where:

Σ =

[√
3 0 0

0 1 0

]
.

8. Do Problem 7 from 6.7.

Solution. "That matrix" refers to Problem 6 from 6.7 above. The closest rank one
matrix A1 approximating A comes from the largest singular value, which is

√
3, as√

3u1v
T
1 . Thus

A1 =
√

3

[
1/
√

2

1/
√

2

] [
1/
√

6 2/
√

6 1/
√

6
]

=

[
1/2 1 1/2
1/2 1 1/2

]

9. Let V be the function space of polynomials with basis 1, x, x2, x3, x4. What is the
matrixMt (it should depend on t) for the operator that sends f(x) to f(x+ t)? Show
that Mt and M−t are inverses.
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Solution. A basis element xn gets sent to

(x+ t)n =

n∑
k=0

(
n
k

)
xktn−k,

by the Binomial Theorem. Thus if we index the matrix by {0, 1, . . . 4} corresponding
to {x0 . . . , x4}, we get

(Mt)ij = tj−i
(
j
i

)
.

Warning: Don’t forget to get the order i ↔ j correct, to avoid writing Mji by mis-
take(!)

We get:

Mt =


1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 1 3t 6t2

0 0 0 1 4t
0 0 0 0 1

 .
TIP of the day (as every day): Always double check !

We compute easily:

MtM−t = Mt =


1 t t2 t3 t4

0 1 2t 3t2 4t3

0 0 1 3t 6t2

0 0 0 1 4t
0 0 0 0 1




1 (−t) (−t)2 (−t)3 (−t)4
0 1 2(−t) 3(−t)2 4(−t)3
0 0 1 3(−t) 6(−t)2
0 0 0 1 4(−t)
0 0 0 0 1

 = I.

10. Let V be the function space with basis sin(x), cos(x), sin(2x), cos(2x). What is the
matrix of the derivative operator in this basis? What is its determinant? Why is the
determinant what you get (you don’t have to turn this part in, but do the mental
exercise)?

Solution. We have

(sinx)′ = cos(x), i.e. [1, 0, 0, 0] 7→ [0, 1, 0, 0] = c1

(cos(x))′ = − sin(x), i.e. [0, 1, 0, 0] 7→ [−1, 0, 0, 0] = c2

(sin(2x))′ = 2 cos(2x), i.e. [0, 0, 1, 0] 7→ [0, 0, 0, 2] = c3

(cos(2x))′ = −2 sin(2x), i.e. [0, 0, 0, 1] 7→ [0, 0,−2, 0] = c4.
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Here we have written out where each basis vectors gets sent to. So, with respect to this
basis we must insert these vectors as the columns cTi (remember how a matrix acts from
the left: on each column),

D =


0 −1 0 0
1 0 0 0
0 0 0 −2
0 0 2 0


Q: Can you see why the following, while tempting to write and somewhat productive, is
nonsensical and furthermore gives you the wrong matrix (namely the transpose DT ), and
hence has been crossed out by your friendly, but insisting, TA?

���
���

���
���

���
���

���
�XXXXXXXXXXXXXXXXXXXXXX


0 1 0 0
−1 0 0 0
0 0 0 2
0 0 −2 0




sin(x)
cos(x)
sin(2x)
cos(2x)

 =


cos(x)
− sin(x)
2 cos(2x)
−2 sin(2x)

.
A: The functions are the vectors themselves (a vector with vector entries can surely make
sense, but that’s fancy way beyond 18.06).

The determinant is: detD = 4. This is a general fact about a matrix of so-called
block-diagonal form (if A,B are n× n matrices):

det

([
A 0
0 B

])
= det(A) det(B),

so here detD = 1 · 4 = 4.

18.06 Wisdom. Try to think about everything you’ve learned in other classes, especially
those without the number 18 in them, as a linear transformation. How many can you name?
Once this clicks – congratulations. That’s the wizard behind the curtain.
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