18.06 Professor Edelman Quiz 3 December 5, 2011

Your PRINTED name is: \quad| Grading |
| :--- |
| 1 |
| 2 |
| 3 |
| 4 |

Please circle your recitation:

1	T 9	$2-132$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
2	T 10	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
3	T 10	$2-146$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
4	T 11	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
5	T 12	$2-132$	Yan Zhang	$2-487$	$3-4083$	yanzhang
6	T 1	$2-132$	Taedong Yun	$2-342$	$3-7578$	tedyun

1 (24 pts.)

Let $A=\left(\begin{array}{ccc}.5 & 0 & 0 \\ .5 & .9 & 0 \\ 0 & .1 & 1\end{array}\right)$.

1. (4 pts) True or False: The matrix A is Markov.
2. (6 pts) Find a vector $x \neq 0$ and a scalar λ such that $A^{T} x=\lambda x$.
3. (4 pts) True or False: The matrix A is diagonalizable. (Explain briefly.)
4. (4 pts) True or False: One singular value of A is $\sigma=0$. (Explain briefly.)
5. (6 pts) Find the three diagonal entries of $e^{A t}$ as functions of t.

This page intentionally blank.

2 (30 pts.)

1. (5 pts) An orthogonal matrix Q satisfies $Q^{T} Q=Q Q^{T}=I$. What are the n singular values of Q ?
2. (10 pts) Let $A=\left(\begin{array}{lll}1 & & \\ & -2 & \\ & & 3\end{array}\right)$. Find an SVD, meaning $A=U \Sigma V^{T}$, where U and V are orthogonal, and $\Sigma=\left(\begin{array}{ccc}\sigma_{1} & & \\ & \sigma_{2} & \\ & & \sigma_{3}\end{array}\right)$ is diagonal with $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \geq 0$. (Be sure that the factorization is correct and satisifies all stated requirements.)
3. (15 pts) The 2×2 matrix $A=\sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}$, where $\sigma_{1}>\sigma_{2}>0$ and both u_{1}, u_{2} and v_{1}, v_{2} are orthonormal bases for R^{2}.

The set of all vectors x with $\|x\|=1$ describes a circle in the plane. What shape best describes the set of all vectors $A x$ with $\|x\|=1$? Draw a general picture of that set labeling all the relevant quantities $\sigma_{1}, \sigma_{2}, u_{1}, u_{2}$ and v_{1}, v_{2}. (Hint: Why are v_{1}, v_{2} relevant and u_{1}, u_{2} not relevant?)

This page intentionally blank.

3 (16 pts.)

1. (6 pts) Let $x \neq 0$ be a vector in R^{3}. How many eigenvalues of $A=x x^{T}$ are positive? zero? negative? (Explain your answer.)
2. (6 pts) a) What are the possible eigenvalues of a projection matrix?
b) True or False: every projection matrix is diagonalizable.
3. (4 pts) True or False: If every eigenvalue of A is 0 , then A is similar to the zero matrix.

This page intentionally blank.

4 (30 pts.)

Consider the matrix $A=\left(\begin{array}{ccc}x & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$ with parameter x in the $(1,1)$ position.

1. (10 pts) Specify all numbers x, if any, for which A is positive definite. (Explain briefly.)
2. (10 pts) Specify all numbers x, if any, for which e^{A} is positive definite. (Explain briefly.)
3. (10 pts) Find an x, if any, for which $4 I-A$ is positive definite. (Explain briefly.)

This page intentionally blank.

