18.06 Professor Edelman Final Exam December 22, 2011

Grading

1

2
3
Your PRINTED name is:___ 4
5

6

7

Please circle your recitation:

1	T 9	$2-132$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
2	T 10	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
3	T 10	$2-146$	Kestutis Cesnavicius	$2-089$	$2-1195$	kestutis
4	T 11	$2-132$	Niels Moeller	$2-588$	$3-4110$	moller
5	T 12	$2-132$	Yan Zhang	$2-487$	$3-4083$	yanzhang
6	T 1	$2-132$	Taedong Yun	$2-342$	$3-7578$	tedyun

1 (13 pts.)

Suppose the matrix A is the product

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
3 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
1 & 0 & 0 & 5 \\
0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(a) (3 pts.) What is the rank of A ?
A has rank 2. (Since the first matrix is non-singular, it does not affect the rank.)
(b) (5 pts.) Give a basis for the nullspace of A.
$\left[\begin{array}{r}0 \\ -4 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-5 \\ 0 \\ 0 \\ 1\end{array}\right]$ Columns 1 and 2 are pivot columns. The other two
are free. We assign 1,0 and 0,1 to the free variables.
(c) (5 pts.) For what values of t (if any) are there solutions to $A x=\left(\begin{array}{l}1 \\ 1 \\ t\end{array}\right)$?
$t=2$. Elimination on $\left(\begin{array}{rrr}1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & 1 & t\end{array}\right)$ yields $\left(\begin{array}{rrr}1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & t-2\end{array}\right)$.

2 (12 pts.)

Let $A=\left(\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right)$.
(a) (3 pts.) Find a basis for the column space of A.
$\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}4 \\ 5 \\ 6\end{array}\right]$. This matrix is familar from class. The first two
columns are pivot columns, the third is free.
(b) (3 pts.) Find a basis for the column space of Σ where $A=U \Sigma V^{T}$ is the svd of A.
Σ is diagonal with first two diagonal elements positive. Hence a basis
for the column space is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
(c) (3 pts .) Find a basis for the column space of the matrix exponential e^{A}

The matrix exponential has full rank, so the three columns of the identity or any linearly independent set of three vectors will do.
(d) (3 pts.) Find a non-zero constant solution (meaning no dependence on t) to $\frac{d}{d t} u(t)=$ $A u(t)$.
$\frac{d}{d t} u(t)=0=A u \Longrightarrow u(t)=\left[\begin{array}{r}1 \\ -2 \\ 1\end{array}\right]$, the eigenvector corresonding
to 0.

3 (12 pts.)

(a) (3 pts.) Give an example of a nondiagonalizable matrix A which satisfies $\operatorname{det}(t I-A)=$ $(4-t)^{4}$

$$
\left(\begin{array}{cccc}
4 & 1 & & \\
& 4 & 1 & \\
& & 4 & 1 \\
& & & 4
\end{array}\right)
$$

is a Jordan block hence is non-diagonalizable.
(b) (3 pts.) Give an example of two different matrices that are similar and both satisfy $\operatorname{det}(t I-A)=(1-t)(2-t)(3-t)(4-t)$.
$\left(\begin{array}{llll}1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 4\end{array}\right)$ and $\left(\begin{array}{llll}4 & & & \\ & 3 & & \\ & & 2 & \\ & & & 1\end{array}\right)$
(c) (3 pts.) Give an example if possible of two matrices that are not similar and both satisfy $\operatorname{det}(t I-A)=(1-t)(2-t)(3-t)(4-t)$.

All matrices with distinct eigenvalues $1,2,3,4$ are similar, so this is impossible.
(d) (3 pts) Give an example of two different 4 x 4 matrices that have singular values $1,2,3,4$.
$\left(\begin{array}{llll}1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 4\end{array}\right)$ and $\left(\begin{array}{cccc}-1 & & \\ & -2 & & \\ & & -3 & \\ & & & -4\end{array}\right)$

4 (16 pts.)

The matrix $G=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$.
(a) (3 pts.) This matrix has two eigenvalues $\lambda=2$, and one eigenvalue $\lambda=-2$. Given that, find the fourth eigenvalue.

The trace is $2-2 i=2+2-2+$? so the fourth eigenvalue is $-2 i$.
(b) (3 pts.) Find a real eigenvector and show that it is indeed an eigenvector.

(Problem 4 continued.) The matrix $G=\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i\end{array}\right)$.
(c) (4 pts.) Is G a Hermitian matrix? Why or why not. (Remember Hermitian means that $H_{j k}=\bar{H}_{k j}$ where the bar indicates complex conjugate.)
No, the diagonals are not real.
(d) (4 pts.) Give an example of a real non-diagonal matrix X for which $G^{H} X G$ is Hermitian.

5 (16 pts.)

The following operators apply to differentiable functions $f(x)$ transforming them to another function $g(x)$. For each one state clearly whether it is linear or not, (expalnations not needed). (2 pts each problem)
(a) $g(x)=\frac{d}{d x} f(x)$ linear (for all linear cases check $c f(x)$ goes to $c g(x)$ and $f_{1}(x)+f_{2}(x)$ goes to $g_{1}(x)+g_{2}(x)$
(b) $g(x)=\frac{d}{d x} f(x)+2$ not linear (zero does not go to 0)
(c) $g(x)=\frac{d}{d x} f(2 x)$ linear
(d) $g(x)=f(x+2)$ linear
(e) $g(x)=f(x)^{2}$ not linear (the function $c f(x)$ should go to $c g(x)$ but it goes to $c^{2} g(x)$.)
(f) $g(x)=f\left(x^{2}\right)$ linear
(g) $g(x)=0$ linear
(h) $g(x)=f(x)+f(2)$ linear (don't be fooled, this one is indeed linear)

6 (20 pts.)

Let $A=I_{3}-c E_{3}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & 1\end{array}\right)-c\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(a) (4 pts.) There are two values of c that make A a projection matrix. Find them by guessing, calculating, or understanding projection matrices. Check that A is a projection matrix for these two c.
$A=A^{2}=I-2 c E+3 c^{2} E \longrightarrow 3 c^{2}=c$ so $c=0$ or $c=1 / 3$. Thus
$A=I$ or $A=\frac{1}{3}\left(\begin{array}{rrr}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$ which upon squaring is itself.
(b) (4 pts.) There are two values of c that make A an orthogonal matrix. Find them and check that A is orthogonal for these two c.
$I=A^{T} A=A^{2}=I-2 c+3 c^{2} E \Longrightarrow 3 c^{2}=2 c$ so $c=0$ or $c=2 / 3$.
Thus $A=I$ or $A=\frac{1}{3}\left(\begin{array}{rrr}1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1\end{array}\right)$ which upon squaring is the
identity.
(c) (4 pts.) For which values of c is A diagonalizable?

The matrix is symmetric, so all values of c make A diagonalizable.
(Problem 6 Continued) Let $A=I_{3}-c E_{3}=\left(\begin{array}{ccc}1 & & \\ & 1 & \\ & & 1\end{array}\right)-c\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
(d) (4 pts.) Find the eigenvalues of A^{-1} (if it exists) in terms of c. (Hint: find the eigenvalues of E_{3} first.)
E_{3} is rank 1 and trace 3 so the eigenvalues are $3,0,0$. Then A has eigenvalues 1-3c, 1,1. Finally A^{-1} has eigenvalues $\frac{1}{1-3 c}, 1,1$.
(e) (4 pts.) For which values of c is A positive definite?
$\frac{1}{1-3 c}>0$ so $c<1 / 3$.

7 (11 pts.)

The general equation of a circle in the plane has the form $x^{2}+y^{2}+C x+D y+E=0$. Suppose you are trying to fit $n \geq 3$ distinct points $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ to obtain a "best" least squares circle, it is reasonable to write a generally unsolvable equation $A x=b$.
(a) (7 pts.) Describe A and b clearly, indicating the number of rows and columns of A and the number of elements in b.
$\left(\begin{array}{ccc}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ \vdots & \vdots & \vdots \\ x_{n} & y_{n} & 1\end{array}\right)\left(\begin{array}{c}C \\ D \\ E\end{array}\right)=\left(\begin{array}{c}-x_{1}^{2}-y_{1}^{2} \\ -x_{2}^{2}-y_{2}^{2} \\ \vdots \\ -x_{n}^{2}-y_{n^{2}}\end{array}\right)$. The matrix A has n
rows and 3 columns, while b has n elements.
(b) (4 pts.) When $n=3$ it is possible to describe when the equation is and is not solvable. You can use your geometric intuition, or a determinant area formula to describe when A is singular. Give a simple geometrical description. (We are looking for a specific word - so only a short answer will be accepted.)

A circle is determined by three points as long as they are not colinear. The matrix A is the area matrix for a triangle, when $\mathrm{n}=3$, so the interpretation is that we can solve the equation, when the area of the triangle is not-zero, i.e. the triangle does not collapse to a line.

