1. Problem 12, section 6.6, p.361.

Solution: Say $M=\left[m_{i j}\right]$. Then the equation $J M=M K$ becomes

$$
\left[\begin{array}{cccc}
m_{21} & m_{22} & m_{23} & m_{24} \\
0 & 0 & 0 & 0 \\
m_{41} & m_{42} & m_{43} & m_{44} \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{cccc}
0 & m_{11} & m_{12} & 0 \\
0 & m_{21} & m_{22} & 0 \\
0 & m_{31} & m_{32} & 0 \\
0 & m_{41} & m_{42} & 0
\end{array}\right]
$$

Hence $m_{11}=m_{22}=0$ and $m_{21}=0$ and $m_{31}=m_{42}=0$ and $m_{41}=0$. In other words, the first column of M vanishes. Thus M is not invertible, as asserted.
2. Problem 13, section 6.6, p.361.

Solution: The six Jordan forms include the two, J and K, given in problem 12, the zero matrix and the following three matrices:

$$
\left[\begin{array}{llll}
0 & 0 & & \\
& 0 & 0 & \\
& & 0 & 0 \\
& & & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & 0 & \\
& & 0 & 0 \\
& & & 0
\end{array}\right],\left[\begin{array}{llll}
0 & 1 & & \\
& 0 & 1 & \\
& & 0 & 1 \\
& & & 0
\end{array}\right]
$$

(Problem 12 shows that J and K are inequivalent forms, although both have two 1 s above the diagonal.)
3. Problem 1, section 6.7, p.371.

Solution: As $r k\left(A^{\mathrm{T}} A\right)=1$, we have $\sigma_{2}=0$ and $\sigma_{1}^{2}=\operatorname{tr}\left(A^{\mathrm{T}} A\right)=10+40=50$. So $A^{\mathrm{T}} A-\sigma_{1}^{2} I$ is $\left[\begin{array}{rr}-40 & 20 \\ 20 & -10\end{array}\right]$. A nullvector is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. So $v_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. An orthogonal vector is $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$. So $v_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1\end{array}\right]$. (As a check, note that v_{1} spans the row space $C\left(A^{\mathrm{T}}\right)$ and v_{2} spans the nullspace $N(A)$.) Then $u_{1}=A v_{1} / \sigma_{1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right] /(\sqrt{5}$. $\sqrt{50})=\left[\begin{array}{c}5 \\ 15\end{array}\right] / 5 \sqrt{10}=\left[\begin{array}{l}1 \\ 3\end{array}\right] / \sqrt{10}$. Further, $\left\|u_{i}\right\|=\sqrt{1+3^{2}} / \sqrt{10}=1$, and $A^{\mathrm{T}} A u_{1}=\left[\begin{array}{cc}5 & 15 \\ 15 & 45\end{array}\right]\left[\begin{array}{l}1 \\ 3\end{array}\right]\left[\begin{array}{c}50 \\ 150\end{array}\right] / \sqrt{10}=\left[\begin{array}{c}50 \\ 150\end{array}\right] / \sqrt{10}=\sigma_{1}^{2} u_{1}$. Finally, the $S V D$ of A is this:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 6
\end{array}\right]=\left(\left[\begin{array}{rr}
1 & 3 \\
3 & -1
\end{array}\right] / \sqrt{10}\right)\left[\begin{array}{ll}
\sqrt{50} & \\
& 0
\end{array}\right]\left(\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right] / \sqrt{5}\right) .
$$

4. Problem 2, section 6.7, p. 372.

Solution: The four fundamental subspaces are each 1-dimensional. So orthonormal bases are formed by the four vectors $v_{1}, v_{2}, u_{1}, u_{2}$. Explicitly, these basis vectors are as follows:

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] / \sqrt{5} \text { for } C\left(A^{\mathrm{T}}\right) ; \quad v_{2}=\left[\begin{array}{r}
-2 \\
1
\end{array}\right] / \sqrt{5} \text { for } N(A) \\
& u_{1}=\left[\begin{array}{l}
1 \\
3
\end{array}\right] / \sqrt{10} \text { for } C(A) ; \quad u_{2}=\left[\begin{array}{r}
3 \\
-1
\end{array}\right] / \sqrt{10} \text { for } N\left(A^{\mathrm{T}}\right)
\end{aligned}
$$

5. Problem 3, section 6.7, p. 372.

Solution: As A has rank 1, so does $A^{\mathrm{T}} A$; in fact, if $A=u v^{\mathrm{T}}$, then $A^{\mathrm{T}} A=$ $v u^{\mathrm{T}} u v^{\mathrm{T}}=\|u\|^{2} v v^{\mathrm{T}}$. Hence, $A^{\mathrm{T}} A$ has only one nonzero eigenvalue, and it is equal to the trace $\operatorname{tr}\left(A^{\mathrm{T}} A\right)$. But the j th diagonal entry of $A^{\mathrm{T}} A$ is the dot product of the j th column with itself. So this entry is the sum $\Sigma_{i} a_{i j}^{2}$. Thus $\sigma_{1}^{2}=\operatorname{tr}\left(A^{\mathrm{T}} A\right)=\Sigma_{i, j} a_{i j}^{2}$.
6. Problem 6, section 6.7, p. 372.

Solution: Since $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$, we find

$$
A^{\mathrm{T}} A=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right] \text { and } A A^{\mathrm{T}}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Since $A^{\mathrm{T}} A$ is of larger size then $A A^{\mathrm{T}}$. We use $A A^{\mathrm{T}}$ to find the σ_{i}. The characteristic polynomial of $A^{\mathrm{T}} A$ is $\lambda^{2}-4 \lambda+3=(\lambda-3)(\lambda-1)$. So $\sigma_{1}^{2}=3$ and $\sigma_{2}^{2}=1$. Then $A A^{\mathrm{T}}-\sigma_{1}^{2} I=\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right]$. So $\left[\begin{array}{rr}-1 & 1 \\ 1 & -1\end{array}\right] u_{1}=0$. Thus $u_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] / \sqrt{2}$. Further, $A A^{\mathrm{T}}-\sigma_{2}^{2} I=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$. So $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] u_{2}=0$. Thus $u_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right] / \sqrt{2}$. (As a check, note that u_{1} and u_{2} are orthogonal.) Nept,

$$
v_{1}=A^{\mathrm{T}} u_{1} / \sigma_{1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] /(\sqrt{2} \cdot \sqrt{3}) . \quad \text { So } v_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] / \sqrt{6} .
$$

And

$$
v_{2}=A^{\mathrm{T}} u_{2} / \sigma_{2}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right] /(\sqrt{2} \cdot 1) . \quad \text { So } \quad v_{2}=\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] / \sqrt{2} .
$$

Further, v_{3} is a nullvector of $A^{\mathrm{T}} A$. So by inspections,

$$
v_{3}=\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] / \sqrt{3}
$$

Finally, the $S V D$ of A is this:

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left(\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] / \sqrt{2}\right)\left[\begin{array}{rrr}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left(\left[\begin{array}{rrr}
1 & -\sqrt{3} & \sqrt{2} \\
2 & 0 & -\sqrt{2} \\
1 & \sqrt{3} & \sqrt{2}
\end{array}\right]^{\mathrm{T}} / \sqrt{6}\right)
$$

7. Problem 7, section 6.7, p. 372 .

Solution: The closest rank-one approximation to the matrix A in problem 6 is given by the first summand in the decomposition $A=\sum \sigma_{i} u_{i} v_{i}^{\mathrm{T}}$, namely,

$$
\sigma_{1} u_{1} v_{1}^{\mathrm{T}}=\sqrt{3}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] / \sqrt{2}\right)\left(\left[\begin{array}{lll}
1 & 2 & 1
\end{array}\right] / \sqrt{6}\right)=\left[\begin{array}{lll}
1 & 2 & 4 \\
1 & 2 & 4
\end{array}\right] / 2
$$

8. Problem 8, section 6.7, p. 372 .

Solution: Since the rengular values of A^{-1} are the reciprocals of those of A, we have

$$
\sigma_{\max }\left(A^{-1}\right)=1 / \sigma_{\max }(A) \geq 1 / \sigma_{\max }(A)
$$

Thus $\sigma_{\max }\left(A^{-1}\right) \sigma_{\max }(A) \geq 1$.
9. Problem 1, section 8.1, p. 418.

Solution: At the top of p.410, the matrix $A_{0}^{\mathrm{T}} C_{0} A_{0}$ is given explicitly. So

$$
\operatorname{det} A_{0}^{\mathrm{T}} C_{0} A_{0}=\left|\begin{array}{rrr}
c_{1}+c_{2} & -c_{2} & \\
-c_{2} & c_{2}+c_{3} & -c_{3} \\
& -c_{3} & c_{3}+c_{4}
\end{array}\right|
$$

Adding the first row to the second and then expanding along the first row, we get

$$
\begin{aligned}
\operatorname{det} A_{0}^{\mathrm{T}} C_{0} A_{0} & =\left|\begin{array}{crr}
c_{1}+c_{2} & -c_{2} & \\
c_{1} & c_{3} & -c_{3} \\
-c_{3} & c_{3}+c_{4}
\end{array}\right| \\
& =\left(c_{1}+c_{2}\right)\left|\begin{array}{rr}
c_{3} & -c_{3} \\
-c_{3} & c_{3}+c_{4}
\end{array}\right|-\left(-c_{2}\right)\left|\begin{array}{rr}
c_{1} & -c_{3} \\
& c_{3}+c_{4}
\end{array}\right| .
\end{aligned}
$$

In the first 2 by 2 determinant, adding the first row to the second, we get

$$
\left|\begin{array}{rr}
c_{3} & -c_{3} \\
-c_{3} & c_{3}+c_{4}
\end{array}\right|=\left|\begin{array}{rr}
c_{3} & -c_{3} \\
& c_{4}
\end{array}\right| .
$$

Therefore, $\operatorname{det} A_{0}^{\mathrm{T}} C_{0} A_{0}=\left(c_{1}+c_{2}\right) c_{3} c_{4}+c_{2} c_{1}\left(c_{3}+c_{4}\right)=c_{1} c_{3} c_{4}+c_{2} c_{3} c_{4}+$ $c_{1} c_{2} c_{3}+c_{1} c_{2} c_{4}$. Finally, setting $c_{4}=0$ yields $\operatorname{det} A_{1}^{\mathrm{T}} c_{1} A_{1}=c_{1} c_{2} c_{3}$.

