Problem 18 Section 6.1

Since A has 2 distinct eigenvalues it can be diagonalized:

$$
\begin{aligned}
A=S^{-1}\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right) S \\
\text { For } \begin{aligned}
S_{1} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad A_{1}=\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right) \\
S_{2} & =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
5 & 0 \\
0 & 4
\end{array}\right) \\
S_{3} & =\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad A_{3}=S_{3}\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right) S_{3}^{-1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
4 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & -1 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 1 \\
0 & 5
\end{array}\right)
\end{aligned}
\end{aligned}
$$

Problem 30 Section 6.1

$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{1}=\binom{a+b}{c+d}=(a+b)\binom{1}{1} \quad$ if $\quad a+b=c+d=\lambda_{1}$
$\operatorname{tr} A=a+d=\lambda_{1}+\lambda_{2} \Rightarrow \lambda_{2}=a+d-(a+b)=d-b(=a-c)$
The eigenvector corresponding to $\lambda_{2}: \quad\left(\begin{array}{cc}a-\lambda_{2} & b \\ c & d-\lambda_{2}\end{array}\right)\binom{x}{y}=\binom{0}{0}$

$$
\left(\begin{array}{ll}
c & b \\
c & b
\end{array}\right)\binom{x}{y}=\binom{0}{0} \quad \Rightarrow\binom{x}{y}=\binom{b}{-c}
$$

Problem 7 Section 6.2

$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ has eigenvectors $\quad \underline{v}_{1}=\binom{1}{1} \quad$ and $\quad \underline{v}_{2}=\binom{1}{-1}$
This means:

$$
\left(\begin{array}{cc}
a-\lambda_{1} & b \\
c & d-\lambda_{1}
\end{array}\right)\binom{1}{1}=\binom{0}{0} \quad \text { and } \quad\left(\begin{array}{cc}
a-\lambda_{2} & b \\
c & d-\lambda_{2}
\end{array}\right)\binom{1}{-1}=\binom{0}{0}
$$

From this $\binom{a+b-\lambda_{1}}{c+d-\lambda_{1}}=\binom{0}{0} \quad$ and $\quad\binom{a-b-\lambda_{2}}{c-d+\lambda_{2}}=\binom{0}{0}$
Or $\left(\begin{array}{rrrr}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1\end{array}\right)\left(\begin{array}{c}a \\ b \\ c \\ d\end{array}\right)=\left(\begin{array}{c}\lambda_{1} \\ \lambda_{1} \\ \lambda_{2} \\ \lambda_{2}\end{array}\right) \quad$ The solution: $a=d=\frac{\lambda_{1}+\lambda_{2}}{2}$
Thus the general form of the matrix is $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ with a, b any number.

Problem 11 Section 6.2

If A is 3×3 then
(a) true: $\operatorname{det} A=2 \cdot 2 \cdot 5=20 \neq 0$
(b) false: $A=\left(\begin{array}{lll}2 & 1 & \\ & 2 & \\ & & 5\end{array}\right)$
(c) false: $A=\left(\begin{array}{lll}2 & & \\ & 2 & \\ & & 5\end{array}\right)$

Problem 7 Section 6.3

$a=\binom{1}{1} \quad P=\frac{a^{\mathrm{T}} a}{a a^{\mathrm{T}}}=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$
One can directly compute the eigenvalues by solving $\operatorname{det}\left(\begin{array}{cc}1-\lambda & 1 \\ 1 & 1-\lambda\end{array}\right)=0$
This gives $\lambda_{1}=0$ and $\lambda_{2}=1$, and the eigenvectors

$$
\begin{array}{lll}
\text { for } \lambda_{1}=0 & \frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{0} & \underline{v}_{1}=\binom{-1}{1} \\
\text { for } \lambda_{2}=1 & \frac{1}{2}\left(\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}=\binom{0}{0} & \underline{v}_{2}=\binom{1}{1}
\end{array}
$$

$\frac{d \underline{u}(t)}{d t}=-P \underline{u}(t) \quad \underline{u}(0)=\binom{3}{1}=2 \underline{v}_{1}+1 \underline{v}_{2}$
We look for $\underline{u}(t)$ in the form $\quad \underline{u}(t)=x(t) \underline{v}_{1}+y(t) \underline{v}_{2}$
$-P \underline{u}(t)=-P\left(x(t) \underline{v}_{1}+y(t) \underline{v}_{2}\right)=-x(t) \underline{v}_{1}+0$
$\frac{d \underline{u}(t)}{d t}=\frac{d x(t)}{d t} \underline{v}_{1}+\frac{d y(t)}{d t} \underline{v}_{2}$
This means $\quad \frac{d x(t)}{d t}=-x(t) \quad x(0)=2$

$$
\frac{d y(t)}{d t}=0 \quad y(0)=1
$$

Solving the equations: $\left.\begin{array}{l}x(t)=2 e^{-t} \\ y(t)=1\end{array}\right\}$
Thus $\underline{u}(t)=2 e^{-t} \underline{v}_{1}+\underline{v}_{2}=\binom{2 e^{-t}+1}{2 e^{-t}-1}$

Problem 3 Section 6.6

- $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$
$B_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$
eigenvalues: 1 and 0
eigenvectors : $\underline{v}_{1}=\binom{1}{1}$ and $\underline{v}_{2}=\binom{0}{1} \quad \underline{u}_{1}=\binom{1}{0}$ and $\underline{u}_{2}=\binom{0}{1}$
$\left.\begin{array}{l}\underline{u}_{1}=\underline{v}_{1}-\underline{v}_{2} \\ \underline{u}_{2}=\underline{v}_{2}\end{array}\right\} \quad$ Thus $\quad M_{1}=\left(\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right)$
- $A_{2}=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$

$$
B_{2}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)
$$

eigenvalues: 2 and 0

$$
\begin{array}{ll}
\text { eigenvectors: } \underline{v}_{1}=\binom{1}{1} \quad \underline{v}_{2}=\binom{1}{-1} & \underline{u}_{1}=\binom{1}{-1} \quad \underline{u}_{2}=\binom{1}{1} \\
M_{2}=\left(\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right) \quad\left(\begin{array}{cc}
0 & -\frac{1}{2} \\
-\frac{1}{2} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -2 \\
-2 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right) \\
-A_{3}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
\end{array}
$$

eigenvalues: 2 and 0

$$
\begin{aligned}
& \text { eigenvectors : } \underline{v}_{1}=\binom{1}{1} \quad \underline{v}_{2}=\binom{1}{-1} \quad \underline{u}_{1}=\binom{1}{-1} \quad \underline{u}_{2}=\binom{1}{1} \\
& M_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Problem 18 Section 6.6
$B(A B) B^{-1}=B A$

Problem 4 Section 8.3
Since the sum in each column is 1 we have: $A^{\mathrm{T}}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$

Problem 11 Section 8.3

The sum in each column is 1 , thus

$$
A=\left(\begin{array}{ccc}
.7 & .1 & .2 \\
.1 & .6 & .3 \\
.2 & .3 & .5
\end{array}\right)
$$

A is symmetric thus $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is an eigenvector of A corresponding to the eigenvalue 1. This means it is a steady state.

