Due Thursday, 21 Oct.

1. Problem 5, section 4.3, p.226.

Solution: In matrix form, the unsolvable equations become $A\hat{x} = b$ with A = [1; 1; 1; 1] and b = [0; 8; 8; 20]. So $A^{T}A\hat{x} = A^{T}b$ is 4C = 36. Thus the best height C is given by C = 9 and the error vector $e = b - A\hat{x}$ by e = [-9; -1; -1; 11]. The pictorial form of the horizontal line and the four errors is drawn on the right.

2. Problem 12, section 4.3, p.228.

Solution:

(a) Here $a^{\mathrm{T}}a = m$ and $a^{\mathrm{T}}b = b_1 + \dots + b_m$. So $a^{\mathrm{T}}a\hat{x} = a^{\mathrm{T}}b$ yields the mean: $\hat{x} = (b_1 + \dots + b_m)/m$.

(b) Here $e = b - a\hat{x}$ is $e = [b_1 - \hat{x}; \dots; b_m - \hat{x}]$. So the <u>variance</u> is $\boxed{||e||^2 = (b_1 - \hat{x})^2 + \dots + (b_m - \hat{x})^2}$ and the <u>standard deviation</u> is $\boxed{||e|| = \sqrt{(b_1 - \hat{x})^2 + \dots + (b_m - \hat{x})^2}}$.

(c) Here
$$p = [3;3;3]$$
 and $e = [-2;-1;3]$. So $p^{\perp}e = 3*(-2)+3*(-1)+3*3 = 0$
and $P = a(a^{\mathrm{T}}a)^{-1}a^{\mathrm{T}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

3. Problem 2.5, section 4.3, p.229.

<u>Solution</u>: Geometrically, the condition is that the segment from the first point to the second has the same slope as the segment from the second point to the third; that is,

$$(b_2 - b_1)/(t_2 - t_1) = (b_3 - b_2)/(t_3 - t_2)$$

Algebraically, the condition is that (t_1, b_1) and (t_2, b_2) and (t_3, b_3) must satisfy some linear equation C + Dt = b. In other words, the vector $[b_1; b_2; b_3]$ must be in column space of the matrix $A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ 1 & t_3 \end{bmatrix}$. That space is the orthogonal complement of the left nullspace $N(A^{T})$. To find $N(A^{T})$, we row reduce A^{T} all the way to echelon form $\operatorname{rref}(A^{T})$:

$$\begin{aligned} A^{\mathrm{T}} &= \begin{bmatrix} 1 & 1 & 1 \\ t_1 & t_2 & t_3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & t_2 - t_1 & t_3 - t_1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & (t_3 - t_1)/(t_2 - t_1) \end{bmatrix} \\ &\longrightarrow \begin{bmatrix} 1 & 0 & (t_2 - t_3)/(t_2 - t_1) \\ 0 & 1 & (t_3 - t_1)/(t_2 - t_1) \end{bmatrix} = \mathrm{rref}(A^{\mathrm{T}}). \end{aligned}$$

Hence $N(A^{\mathrm{T}})$ consists of all multiples of the special solution $y = [-(t_2-t_3)/(t_2-t_1), -(t_3-t_1)/(t_2-t_1), 1]$. So the condition becomes $y^{\mathrm{T}}[b_1; b_2; b_3] = 0$, or

$$-b_1(t_2-t_3)/(t_2-t_1), -b_2(t_3-t_1)/(t_2-t_1)+b_3=0.$$

Finally, this equation is equivalent to the one displayed above.

4. Problem 1, section 4.4, p.239.

<u>Solution</u>: The pairs are in (a) only independent, in (b) both independent and orthogonal, and in (c) all three. To produce orthonormal vectors, change the second vector in (a) to [0;1] and in (b) to $[.4;-.3]/\sqrt{.16+.09} = [.8;-.6]$.

5. Problem 4, section 4.4, p.239.

Solution: Examples are the following: (a)
$$Q = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 with $Q Q^{\mathrm{T}} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$;
(b) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$; and (c) $q_2 = (1, -1, 0)/\sqrt{2}$ and $q_3 = (1, 1, -2)/\sqrt{6}$.

6. Problem 18, section 4.4, p.241.

Solution: The Gram-Schmidt process yields the following:

$$A = a = \boxed{(1, -1, 0, 0)};$$

$$B = b - p_A = (0, 1, -1, 0) - (1, -1, 0, 0) * (-1)/2 = \boxed{(1/2, 1/2, -1, 0)};$$

$$C = c - p_A - p_B = (0, 0, 1, -1) - (1, -1, 0, 0) * (0)/2 - (1/2, 1/2, -1, 0) * (-1)/(1/4 + 1/4 + 1 + 0))$$

$$= \boxed{(1/3, 1/3, 1/3, -1)}.$$

7. Problem 20, section 4.4, p.241.

Solution: (a) True, an example is
$$Q = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} / \sqrt{2}$$
 with $Q^{-1} = Q^{T} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} / \sqrt{2}$.
(b) True as $Q = \begin{bmatrix} q_{1} & q_{2} \end{bmatrix}$ implies $||Q x||^{2} = (x_{1} q_{1}^{T} + x_{2} q_{2}^{T}) * (q_{1} x_{1} + q_{2} x_{2}) = x_{1}^{2} + x_{2}^{2}$
since $q_{1}^{T} q_{1} = 1$, $q_{1}^{T} q_{2} = 0$ and $q_{2}^{T} q_{2} = 1$. An example is $Q = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{2} \\ 1/\sqrt{3} & 0 \end{bmatrix}$
and $x = \begin{bmatrix} \sqrt{3} \\ \sqrt{2} \end{bmatrix}$. Here $Q x = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$. So $||Q x||^{2} = 4 + 1 = 5$.
And $||x||^{2} = 3 + 2 = 5$.

8. Problem 2, section 8.5, p.451.

Solution: Three integration show that the polynomial 1, x, $x^2 - 1/3$ are orthogonal on the interval [-1, 1]:

$$\int_{-1}^{1} (1)(x) dx = [x^2/2]_{-1}^{1} = 0;$$

$$\int_{-1}^{1} (1)(x^2 - 1/3) dx = [x^3/3 - x/3]_{-1}^{1} = 2(1/3 - 1/3) = 0;$$

$$\int_{-1}^{1} (x)(x^2 - 1/3) dx = [x^4/4 - x^2/6]_{-1}^{1} = 0.$$

Clearly, any polynomial of degree 2 can be written as a linear combination of 1, x, $x^2 - 1/3$. By inspection, $2x^2 = 2(x^2 - 1/3) + 0(x) = (2/3)(1)$. Those coefficients 2, 0, 2/3 can also be found by integrating $f(x) = 2x^2$ times the three basis functions and dividing by their "length" squared.

9. Problem 4, section 8.5, p.451.

Solution: On [-1, 1], the integrals of any odd function vanishes. So for any c,

$$\int_{-1}^{1} (1)(x^3 - cx)dx = 0 \quad \text{and} \quad \int_{-1}^{1} (1)(x^2 - 1/3)(x^3 - cx)dx = 0.$$

Choose c so that the remaining integral vanishes:

$$\int_{-1}^{1} (x)(x^3 - cx)dx = [x^5/5 - cx^3/3]_{-1}^{1} = 2(1/5 - c/3) = 0.$$

hus $c = 3/5$.

T

10. Problem 6, section 8.5, p.451.

<u>Solution</u>: Equations (6) and (8) on p.449 yield $2\pi = \pi (4/\pi)^2 (1/1^2 + 1/3^2 + 1/5^2 + \cdots) \quad \text{or}$ $\boxed{\pi^2 = 8(1/1^2 + 1/3^2 + 1/5^2 + \cdots)}.$

11. Find the best linear approximation to $y = x^2$ on [-1, 1].

<u>Solution</u>: In problem 2, section 8.5, it was shown that $1, x, x^2 - 1/3$ are orthogonal. By inspection, $x^2 = 1(x^2 - 1/3) + 0(x) + (1/3)(1)$. Hence the orthogonal projection of $y = x^2$ into the span of 1 and x is y = 1/3, which is therefore the best linear approximation.