1. Problem 5, section 4.3, p. 226 .

Solution: In matrix form, the unsolvable equations become $A \hat{x}=b$ with $A=[1 ; 1 ; 1 ; 1]$ and $b=$ $[0 ; 8 ; 8 ; 20]$. So $A^{\mathrm{T}} A \hat{x}=A^{\mathrm{T}} b$ is $4 C=36$. Thus the best height C is given by $C=9$ and the error vector $e=b-A \hat{x}$ by $e=[-9 ;-1 ;-1 ; 11]$.
The pictorial form of the horizontal line and the four
 errors is drawn on the right.
2. Problem 12, section 4.3, p. 228 .

Solution:

(a) Here $a^{\mathrm{T}} a=m$ and $a^{\mathrm{T}} b=b_{1}+\cdots+b_{m}$. So $a^{\mathrm{T}} a \hat{x}=a^{\mathrm{T}} b$ yields the mean:
$\hat{x}=\left(b_{1}+\cdots+b_{m}\right) / m$.
(b) Here $e=b-a \hat{x}$ is $e=\left[b_{1}-\hat{x} ; \ldots ; b_{m}-\hat{x}\right]$. So the variance is $\|e\|^{2}=\left(b_{1}-\hat{x}\right)^{2}+\cdots+\left(b_{m}-\hat{x}\right)^{2}$ and the standard deviation is $\|e\|=\sqrt{\left(b_{1}-\hat{x}\right)^{2}+\cdots+\left(b_{m}-\hat{x}\right)^{2}}$.
(c) Here $p=[3 ; 3 ; 3]$ and $e=[-2 ;-1 ; 3]$. So $p^{\perp} e=3 *(-2)+3 *(-1)+3 * 3=0$
and $P=a\left(a^{\mathrm{T}} a\right)^{-1} a^{\mathrm{T}}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.
3. Problem 2.5, section 4.3, p.229.

Solution: Geometrically, the condition is that the segment from the first point to the second has the same slope as the segment from the second point to the third; that is,

$$
\left(b_{2}-b_{1}\right) /\left(t_{2}-t_{1}\right)=\left(b_{3}-b_{2}\right) /\left(t_{3}-t_{2}\right) \text {. }
$$

Algebraically, the condition is that $\left(t_{1}, b_{1}\right)$ and $\left(t_{2}, b_{2}\right)$ and $\left(t_{3}, b_{3}\right)$ must satisfy some linear equation $C+D t=b$. In other words, the vector $\left[b_{1} ; b_{2} ; b_{3}\right]$ must be in column space of the matrix $A=\left[\begin{array}{cc}1 & t_{1} \\ 1 & t_{2} \\ 1 & t_{3}\end{array}\right]$. That space is the orthogonal
complement of the left nullspace $N\left(A^{\mathrm{T}}\right)$. To find $N\left(A^{\mathrm{T}}\right)$, we row reduce A^{T} all the way to echelon form $\operatorname{rref}\left(A^{\mathrm{T}}\right)$:

$$
\begin{aligned}
A^{\mathrm{T}}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
t_{1} & t_{2} & t_{3}
\end{array}\right] & \longrightarrow\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & t_{2}-t_{1} & t_{3}-t_{1}
\end{array}\right] \longrightarrow\left[\begin{array}{ccc}
1 & 1 \\
0 & 1 & \left(t_{3}-t_{1}\right) /\left(t_{2}-t_{1}\right)
\end{array}\right] \\
& \longrightarrow\left[\begin{array}{ccc}
1 & 0 & \left(t_{2}-t_{3}\right) /\left(t_{2}-t_{1}\right) \\
0 & 1 & \left(t_{3}-t_{1}\right) /\left(t_{2}-t_{1}\right)
\end{array}\right]=\operatorname{rref}\left(A^{\mathrm{T}}\right)
\end{aligned}
$$

Hence $N\left(A^{\mathrm{T}}\right)$ consists of all multiples of the special solution $y=\left[-\left(t_{2}-t_{3}\right) /\left(t_{2}-\right.\right.$ $\left.\left.t_{1}\right),-\left(t_{3}-t_{1}\right) /\left(t_{2}-t_{1}\right), 1\right]$. So the condition becomes $y^{\mathrm{T}}\left[b_{1} ; b_{2} ; b_{3}\right]=0$, or

$$
-b_{1}\left(t_{2}-t_{3}\right) /\left(t_{2}-t_{1}\right),-b_{2}\left(t_{3}-t_{1}\right) /\left(t_{2}-t_{1}\right)+b_{3}=0
$$

Finally, this equation is equivalent to the one displayed above.
4. Problem 1, section 4.4, p. 239 .

Solution: The pairs are in (a) only independent, in (b) both independent and orthogonal, and in (c) all three. To produce orthonormal vectors, change the second vector in (a) to $[0 ; 1]$ and in (b) to $[.4 ;-.3] / \sqrt{.16+.09}=[.8 ;-.6]$.
5. Problem 4, section 4.4, p. 239.

Solution: Examples are the following: $(a) Q=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ with $Q Q^{\mathrm{T}}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$;
(b) $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 0\end{array}\right]$; and $(c) q_{2}=(1,-1,0) / \sqrt{2}$ and $q_{3}=(1,1,-2) / \sqrt{6}$.
6. Problem 18, section 4.4, p. 241.

Solution: The Gram-Schmidt process yields the following:

$$
\begin{aligned}
A & =a=(1,-1,0,0) \\
B & =b-p_{A}=(0,1,-1,0)-(1,-1,0,0) *(-1) / 2=(1 / 2,1 / 2,-1,0) ; \\
C & =c-p_{A}-p_{B}=(0,0,1,-1)-(1,-1,0,0) *(0) / 2-(1 / 2,1 / 2,-1,0) *(-1) /(1 / 4+1 / 4+1+0) \\
& =(1 / 3,1 / 3,1 / 3,-1) .
\end{aligned}
$$

7. Problem 20, section 4.4, p. 241.

Solution: (a) True, an example is $Q=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right] / \sqrt{2}$ with $Q^{-1}=Q^{\mathrm{T}}=\left[\begin{array}{ll}1 & 1 \\ -1 & 1\end{array}\right] / \sqrt{2}$.
(b) True as $Q=\left[\begin{array}{ll}q_{1} & q_{2}\end{array}\right]$ implies $\|Q x\|^{2}=\left(x_{1} q_{1}^{\mathrm{T}}+x_{2} q_{2}^{\mathrm{T}}\right) *\left(q_{1} x_{1}+q_{2} x_{2}\right)=x_{1}{ }^{2}+x_{2}{ }^{2}$ since $q_{1}^{\mathrm{T}} q_{1}=1, q_{1}^{\mathrm{T}} q_{2}=0$ and $q_{2}^{\mathrm{T}} q_{2}=1$. An example is $Q=\left[\begin{array}{rr}1 / \sqrt{3} & 1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{2} \\ 1 / \sqrt{3} & 0\end{array}\right]$ and $x=\left[\begin{array}{c}\sqrt{3} \\ \sqrt{2}\end{array}\right]$. Here $Q x=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$. So $\|Q x\|^{2}=4+1=5$.
And $\|x\|^{2}=3+2=5$.
8. Problem 2, section 8.5, p. 451 .

Solution: Three integration show that the polynomial $1, x, x^{2}-1 / 3$ are orthogonal on the interval $[-1,1]$:

$$
\begin{aligned}
& \int_{-1}^{1}(1)(x) d x=\left[x^{2} / 2\right]_{-1}^{1}=0 \\
& \int_{-1}^{1}(1)\left(x^{2}-1 / 3\right) d x=\left[x^{3} / 3-x / 3\right]_{-1}^{1}=2(1 / 3-1 / 3)=0 \\
& \int_{-1}^{1}(x)\left(x^{2}-1 / 3\right) d x=\left[x^{4} / 4-x^{2} / 6\right]_{-1}^{1}=0
\end{aligned}
$$

Clearly, any polynomial of degree 2 can be written as a linear combination of $1, x, x^{2}-1 / 3$. By inspection, $2 x^{2}=2\left(x^{2}-1 / 3\right)+0(x)=(2 / 3)(1)$. Those coefficients $2,0,2 / 3$ can also be found by integrating $f(x)=2 x^{2}$ times the three basis functions and dividing by their "length" squared.
9. Problem 4, section 8.5, p. 451.

Solution: On $[-1,1]$, the integrals of any odd function vanishes. So for any c,

$$
\int_{-1}^{1}(1)\left(x^{3}-c x\right) d x=0 \quad \text { and } \quad \int_{-1}^{1}(1)\left(x^{2}-1 / 3\right)\left(x^{3}-c x\right) d x=0
$$

Choose c so that the remaining integral vanishes:

$$
\int_{-1}^{1}(x)\left(x^{3}-c x\right) d x=\left[x^{5} / 5-c x^{3} / 3\right]_{-1}^{1}=2(1 / 5-c / 3)=0
$$

Thus $c=3 / 5$.
10. Problem 6, section 8.5, p. 451 .

Solution: Equations (6) and (8) on p. 449 yield

$$
\begin{aligned}
& 2 \pi=\pi(4 / \pi)^{2}\left(1 / 1^{2}+1 / 3^{2}+1 / 5^{2}+\cdots\right) \quad \text { or } \\
& \pi^{2}=8\left(1 / 1^{2}+1 / 3^{2}+1 / 5^{2}+\cdots\right) .
\end{aligned}
$$

11. Find the best linear approximation to $y=x^{2}$ on $[-1,1]$.

Solution: In problem 2 , section 8.5 , it was shown that $1, x, x^{2}-1 / 3$ are orthogonal. By inspection, $x^{2}=1\left(x^{2}-1 / 3\right)+0(x)+(1 / 3)(1)$. Hence the orthogonal projection of $y=x^{2}$ into the span of 1 and x is $y=1 / 3$, which is therefore the best linear approximation.

