Due Thursday, 14 Oct.

1. Problem 14, section 8.2, p.430.

Solution: Suppose $A^{\mathrm{T}}CAx = 0$. Set $y := \sqrt{C}Ax$. Then $||y||^2 = x^{\mathrm{T}}(\sqrt{C}A)^{\mathrm{T}}$ $(\sqrt{C}A)x = x^{\mathrm{T}}A^{\mathrm{T}}CAx = 0$. So y = 0. We assume no diagonal entry of C is 0. Hence Ax = 0. Conversely, if Ax = 0, then $A^{T}CAx = 0$. Thus the vectors x in the nullspace of $A^{T}CA$ are just the x in the nullspace of A, namely, all multiples of [1; 1; 1; 1].

The equation of $A^{T}CAx = f$ is solvable if and only if x belongs to the column space of $A^{T}CA$. By symmetry, the latter is equal to the row space, so is the orthogonal complement of the nullspace. Hence $A^{T}CAx = f$ is solvable if and only if [1, 1, 1, 1] * f = 0, or $f_1 + f_2 + f_3 + f_4 = 0$.

2. Solve the system

$$\left(\begin{array}{rrrr}1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\end{array}\right)x = \left(\begin{array}{r}8\\ 5\\ 2\end{array}\right).$$

Solution: Performing elimination yields

$$A = \begin{pmatrix} \boxed{1} & 2 & 3 & 8 \\ 4 & 5 & 6 & 5 \\ 7 & 8 & 9 & 2 \end{pmatrix} \xrightarrow{l_{21} = 4} \begin{pmatrix} 1 & 2 & 3 & 8 \\ 0 & \boxed{-3} & -6 & 27 \\ 0 & -6 & -12 & -54 \end{pmatrix}$$
$$\xrightarrow{l_{32} = 2} \begin{pmatrix} 1 & 2 & 3 & 8 \\ 0 & -3 & -6 & 27 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

There is just one free variable x_3 . So the general solution is

$$x = \begin{pmatrix} -10\\ 9\\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 1\\ -2\\ 1 \end{pmatrix}.$$

3. Since A has two pivots r(A) = 2.

All ranks of B can be achieved.

•
$$r(B) = 0$$
 this can only be the 0 matrix:

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
in this case $AB = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
thus $r(AB) = 0 = \min\{2, 0\} = \min\{r(A), r(B)\}$

hus
$$r(AB) = 0 = \min\{2, 0\} = \min\{r(A), r(B)\}$$

• r(B) = 1 We want $r(AB) = \min\{r(A), r(B)\} = \min\{2, 1\} = 1$. We know that $r(AB) \leq 1$, thus this holds if AB is not the 0 matrix, which happens whenever B is not of the form

$$\left(\begin{array}{rrrr}a&b&c\\-2a&-2b&-2c\\a&b&c\end{array}\right)$$

thus for example for

$$B = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

We have

$$AB = \left(\begin{array}{rrrr} 1 & 0 & 0\\ 4 & 0 & 0\\ 7 & 0 & 0 \end{array}\right)$$

and $r(AB)=1=\min\{r(A),r(B)\}=1$

• r(B) = 2 For

$$B = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

We have

$$AB = \left(\begin{array}{rrrr} 1 & 2 & 0\\ 4 & 5 & 0\\ 7 & 8 & 0 \end{array}\right)$$

Thus $r(AB) = 2 = \min\{r(A), r(B)\} = \min\{2, 2\} = 2$

• r(B) = 3. If B is invertible then $r(AB) = r(A)(=\min\{r(A), 3\})$ always holds.

Pick for example

$$B = \left(\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

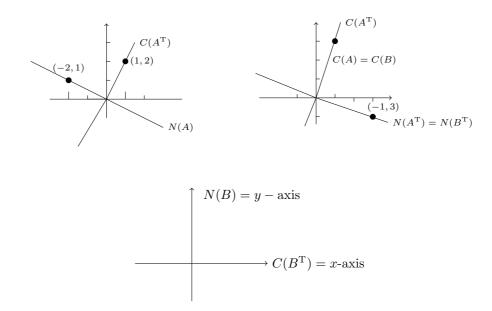
Now

AB = A

Thus r(AB) = r(A) = 2 as required.

4. Problem <u>11</u>, sections 4.1, p.203.

<u>Solution</u>: Since $\operatorname{rref}(A) = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$, we have $\lambda(A) = 1$ and the pivot column of A is $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Hence C(A) = C(B) and $N(A^{\mathrm{T}}) = N(B^{\mathrm{T}})$. Thus the correct figures are the following



5. Problem 17, section 4.1, p.204.

Solution: If S is the subspace of IR³ containing only the zero vector, then $S^{\perp} = \text{IR}^3$. If S is spanned by (1,1,1), then S^{\perp} is the plane with equation x + y + z = 0, which is the plane spanned by (1,-1,0) and (1,0,-1). If S is spanned by (1,1,1) and (1,1,-1), then $\{(1,-1,0)\}$ is a basic for S^{T} .

- 6. (a) Entry (i, j) in AA^{T} is the inner product of row *i* and row *j* of *A*.
 - (b) Since A is orthogonal, $A^{\mathrm{T}}A = I$, So $A^{\mathrm{T}} = A^{-1}$. Hence $(A^{\mathrm{T}})^{\mathrm{T}}A^{\mathrm{T}} = AA^{\mathrm{T}} = I$. Thus A^{T} is orthogonal.
 - (c) If A and B are orthogonal, then $(AB)^{T}(AB) = B^{T}A^{T}AB = B^{T}B = I$. Thus AB is orthogonal.

7. Problem 5, section 4.2, p.214.

<u>Solution</u>: First, $a_1^{\mathrm{T}}a_1 = 1 + 4 + 4 = 9$. So $P_1 = \frac{1}{9} * a_1 a_1^{\mathrm{T}} = \frac{1}{9} \begin{pmatrix} 1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4 \end{pmatrix}$. Second, $a_2^{\mathrm{T}}a_2 = 4 + 4 + 1 = 9$. So $P_2 = \frac{1}{9}a_2a_2^{\mathrm{T}} = \frac{1}{9} \begin{pmatrix} 4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1 \end{pmatrix}$. Finally, $P_1P_2 = 0$ because $a_1 \perp a_2$ as $a_1^{\mathrm{T}}a_2 = -2 + 4 - 2 = 0$.

8. Problem 14, section 4.2, p.215.

Solution: The projection of b is itself, because b lies in the column space of A. No, $P \neq I$ if $C(A) \neq IR^{rn}$. When $A = \begin{pmatrix} 0 & 1 \\ 1 & 2 \\ 2 & 0 \end{pmatrix}$, then $P = A(A^{T}A)^{-1}A^{T} = \frac{1}{21}\begin{pmatrix} 5 & 8 & -4 \\ 8 & 17 & 2 \\ -4 & 2 & 20 \end{pmatrix}$ and $b = Pb = p = \begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$.

9. Problem 17, section 4.2, p.215.

Solution: If $P^2 = P$, then $(I-P)^2 = (I-P)(I-P) = I - PI - IP + P^2 = I - P$. When P projects onto the column space of A, then $I \cdot P$ projects onto its orthogonal complement, which is the left nullspace of A.