### 18.06 Problem Set 2 Solutions

1. Do problem 5 from section 2.6 .

Solution Doing the elimination process, with matrices:

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
6 & 3 & 5
\end{array}\right) \rightarrow E_{31} A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right) A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right)=U
$$

Thus in this case

$$
E=E_{31}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right)
$$

With

$$
\begin{gathered}
L=E^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & 0 & 1
\end{array}\right) \\
A=L U=\left(\begin{array}{lll}
1 & \\
0 & 1 & \\
3 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 4 & 2 \\
0 & 0 & 5
\end{array}\right)
\end{gathered}
$$

2. Do problem 16 from section 2.6.

## Solution

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right) c=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

gives

$$
c=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)
$$

Then

$$
\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
4 \\
1 \\
1
\end{array}\right)
$$

gives

$$
x=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)
$$

Those are the forward elimination and back substitution steps for

$$
A x=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)
$$

3. Do problem 21 from section 2.6.

## Solution

(a) For the first matrix $A$. The elimination matrices $E_{31}, E_{41}$ and $E_{42}$ are all identity matrices. Thus $L=E^{-1}$ keeps the 3 lower zeros at the start of rows; the entries $L_{31}, L_{41}$ and $L_{42}$ are all zero But $U$ may not have the upper zero where $A_{24}=0$. For example for

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

It can be seen at the first nontrivial elimination step that the entry $U_{24}$ is -1 .
(b) For the second matrix $B$. The elimination matrix $E_{41}$ is the identity matrix, thus $L=E^{-1}$ has entry $L_{41}=0$. Also the first row is not changed during the elimination process, thus $U_{14}$ remains 0 . The other 0 entries however can get filled in, for example if

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right)
$$

The entry $U_{23}$ becomes -1 in $E_{21} A$ (and it is not changed afterwards), and $U_{32}$ becomes -1 also in $E_{21} A$, and since $A_{23}=0$ it is not changed during further elimination.
4. Do problem 13 from section 2.7.

Solution A cyclic

$$
P=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right)
$$

or its transpose will have $P^{3}=I:(1,2,3) \rightarrow(2,3,1) \rightarrow(3,1,2) \rightarrow(1,2,3)$.

$$
\hat{P}=\left(\begin{array}{ll}
1 & 0 \\
0 & P
\end{array}\right)
$$

for the same $P$ has $\hat{P}^{4}=\hat{P} \neq I$.
5. Do problem 19 from section 2.7.

## Solution

(a) $R^{T} A R$ is n by n , and it is symmetric:

$$
\left(R^{T} A^{T} R\right)^{T}=R^{T} A^{T}\left(R^{T}\right)^{T}=R^{T} A R
$$

(b) The $j$ th diagonal entry $\left(R^{T} R\right)_{j j}$ is (column $j$ of $\left.R\right) \cdot($ column $j$ of $R)=($ length squared of column $j) \geq 0$.
6. Do problem 34 from section 2.7.

Solution An elementary row operation matrix has the form

$$
E=\left(\begin{array}{ll}
1 & 0 \\
x & 1
\end{array}\right)
$$

with inverse

$$
E^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-x & 1
\end{array}\right)
$$

We want

$$
H=E^{-} 1 A=E=\left(\begin{array}{cc}
1 & 2 \\
4-x & 9-2 x
\end{array}\right)
$$

to be symmetric, that is $2=H_{12}=H_{21}=4-x$, thus $x=2$. So the factorisation is

$$
E H=\left(\begin{array}{ll}
1 & 2 \\
4 & 9
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right)=\text { (elementery matrix) } \cdot(\text { symmetric matrix }) .
$$

7. Do problem 10 from section 3.1.

## Solution

(a) this is subspace:

- for $\mathbf{v}=\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2}$ and $\mathbf{w}=\left(c_{1}, c_{2}, c_{3}\right)$ with $c_{1}=c_{2}$ the sum $\mathbf{v}+\mathbf{w}=$ $b_{1}+c_{1}, b_{2}+c_{2}, b_{3}+c_{3}$ is in the same set as $b_{1}+c_{1}=b_{2}+c_{2}$.
- for an element $\mathbf{v}=\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}=b_{2} . c \mathbf{v}=\left(c b_{1}, c b_{2}, c b_{3}\right)$ and $c b_{1}=c b_{2}$, thus it is in the same set.
(b) this is not a subspace, for example for $\mathbf{v}=(1,0,0)-\mathbf{v}=(-1,0,0)$ is not in the set.
(c) this is not a subspace, for example the vectors $\mathbf{v}=(1,1,0)$ and $\mathbf{w}=(1,0,1)$ are in the set, but their sum $\mathbf{v}+\mathbf{w}=(2,1,1)$ is not.
(d) this is a subspace:
- for two vectors $\mathbf{v}_{1}=\alpha_{1} \mathbf{v}+\beta_{1} \mathbf{w}$ and $\mathbf{v}_{2}=\alpha_{2} \mathbf{v}+\beta_{2} \mathbf{w}$ the sum $\mathbf{v}_{1}+\mathbf{v}_{2}=\alpha_{1} \mathbf{v}+\beta_{1} \mathbf{w}+$ $\left.\alpha_{2} \mathbf{v}+\beta_{2} \mathbf{w}=\left(\alpha_{1}+\alpha_{2}\right) \mathbf{v}+\left(\beta_{1}+\beta_{2}\right) \mathbf{w}\right)$ is still the linear combination of $\mathbf{v}$ and $\mathbf{w}$.
- for an element $\mathbf{v}_{1}=\alpha_{1} \mathbf{v}+\beta_{1} \mathbf{w} \cdot c \mathbf{v}_{1}=c \alpha_{1} \mathbf{v}+c \beta_{1} \mathbf{w}$ is a linear combination of $\mathbf{v}$ and $\mathbf{w}$ thus it is in the same set.
(e) this is subspace:
- for $\mathbf{v}=\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}+b_{2}+b_{3}=0$ and $\mathbf{w}=\left(c_{1}, c_{2}, c_{3}\right)$ with $c_{1}+c_{2}+c_{3}=0$ the $\operatorname{sum} \mathbf{v}+\mathbf{w}=b_{1}+c_{1}, b_{2}+c_{2}, b_{3}+c_{3}$ is in the same set as $b_{1}+c_{1}+b_{2}+c_{2}+b_{3}+c_{3}=0$.
- for an element $\mathbf{v}=\left(b_{1}, b_{2}, b_{3}\right)$ with $b_{1}+b_{2}+b_{3}=0 . c \mathbf{v}=\left(c b_{1}, c b_{2}, c b_{3}\right)$ and $c b_{1}+c b_{2}+$ $c b_{3}=0$, thus it is in the same set.
(f) this is not a subspace, for example $(1,2,3)$ is in the set, but $-1(1,2,3)=(-1,-2,-3)$ is not in the set.

8. Do problem 22 from section 3.1.

Solution The system

$$
A \mathbf{x}=\mathbf{b}
$$

has a solution if $\mathbf{b}$ is in the subspace spanned by the columns of $A$, thus
(a) Solution for every $b$;
(b) Solvable only if $b_{3}=0$;
(c) Solvable only if $b_{3}=b_{2}$.
9. Do problem 24 from section 3.1.

Solution The column space of $A B$ is contained in (possibly equal to) the column space of $A$. The example $B=0$ and $A \neq 0$ is a case when $A B=0$ has a smaller column space than $A$.

