
18.06 Problem Set 10 Solutions
1. Do problem 5 from section 6.5.

Solution f = (x + 3y)(x + y) = (x + 2y + y)(x + 2y − y) = (x + 2y)2 − y2. There are many
points where this is negative, say (−1, 2), where the above is 02 − 22 = −4.

This goes to show that not everything is positive-definite, even if all the entries are positive.

2. Do problem 26 from section 6.5.

Solution Let’s do an LU ofA =

 9 0 0
0 1 2
0 2 8

. We should immediately getA =

 1 0 0
0 1 0
0 2 1

 9 0 0
0 1 2
0 0 4

.

By symmetry, we don’t have to do much more. We know D =

 9 0 0
0 1 0
0 0 4

 from the pivots, so to

get CT we should multiply L by

 3 0 0
0 1 0
0 0 2

 to get

 3 0 0
0 1 0
0 2 2

, and C =

 3 0 0
0 1 2
0 0 2

.

The second matrix is similar. LU gives A =

 1 0 0
1 1 0
1 1 1

 1 1 1
0 1 1
0 0 5

. We know the square

roots of D are 1, 1,
√

5, so CT =

 1 0 0
1 1 0
1 1

√
5

 and C =

 1 1 1
0 1 1
0 0

√
5

.

The point of this is just that the cholesky decomposition really is just LU for a symmetric matrix -
don’t need to think of them as separate things.

3. Do problem 6 from section 6.7.

Solution ATA =

 1 1 0
1 2 1
0 1 1

 and AAT =
(

2 1
1 2

)
. Because we know that they “basically”

have the same eigenvalues I’m going to save work by using the eigenvalues of AAT , which are 3 and
1 (so we know ATA has eigenvalues 3, 1, 0).

In the order of 3, 1, 0, the normalized eigenvectors ofATA are (1/
√

6, 2
√

6, 1
√

6), (1/
√

2, 0,−1/
√

2), (1/
√

6,−1
√

6, 1
√

6)
and the normalized eigenvectors of AAT are (1/

√
2, 1/
√

2), (1/
√

2,−1/
√

2). Multiplying, we get

A =
(

1/
√

2 1/
√

2
1/
√

2 −1/
√

2

)( √
3 0 0

0 1 0

) 1/
√

6 2/
√

6 1/
√

6
1/
√

2 0 −1/
√

2
1/
√

6 −1/
√

6 1/
√

6

 ,

which we can check to be correct.

Okay, I just realized you guys already did this in the last pset. Ugh.

4. Do problem 11 from section 6.7.

Solution
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Orthogonality tells us that ATA is going to be diagonal with entries ρ2
1, . . . , ρ

2
n. Thus, the columns

of V (or the rows of V T ) are just going to be the eigenvectors ei = (0, . . . , 1, . . . , 0), so V = V T is
going to be the n by n identity matrix.

Σ is going to have the lengths on the diagonal, because those are exactly the positive square roots of
the eigenvalues.

Finally, uj = Avj/ρj , which in our case is exactly the normalized column wj/|wj |. So U is just
going to have columns of A, but normalized.

5. Do problem 13 from section 6.7.

Solution Let’s go through the process for the SVD of R. note that RTR = RTQTQR = ATA, so
the eigenvalues (and thus Σ) and eigenvectors (and thus V ) remain the same in the two calculations -
the only thing that changes is U .

An alternate way to see this is to note that if we multiply U on the left by a n orthonormal Q, the
result QU is still orthonormal because (QU)TQU = UTQTQU = I . Thus, since R = USV T ,
A = QR = (QU)SV T is a valid SVD for A.

6. Do problem 2 from section 8.1.

Solution Here we have A1 =

 1 0 0
−1 1 0
0 −1 1

. A−1
1 =

 1 0 0
1 1 0
1 1 1

, so the inverse is just

A−1
1 C−1

1 (AT
1 )−1 =

 1/c1 1/c1 1/c1
1/c1 1/c1 + 1/c2 1/c1 + 1/c2
1/c1 1/c1 + 1/c2 1/c1 + 1/c2 + 1/c3

.

7. Do problem 5 from section 8.1.

Solution The solution of this is y = −
∫
f(x) + C, with C determined by y(1) = 0. For f(x) = 1

we get y = −x+ 1.

8. Do problem 6 from section 7.1.

Solution Let’s call the conditions “additivity” and “scaling” respectively.

[a]: This is scaling the vector into a normal vector. Thus it is impossible that we get additivity, because
the sums of normal vectors don’t have to be normal. Take T (0, 1) and T (1, 0) for instance. Howver,
true to its name this does have the scaling property, as whatever c we introduce will be canceled from
v and ||v||.

[b]: This satisfies both. One immediate way to see this is to see that this is exactly matrix multiplication
by [1, 1, 1], which is a linear operation and thus satisfies both properties.

[c]: This also satisfies both. Again, this is jsut because this is matrix multiplication by

 1 0 0
0 2 0
0 0 3

.

[d]: This doesn’t satisfy additivity ((0, 1) and (1, 0) still work). Furthermore, scaling doesn’t work
either (if we scale by−1 we now pick out the negative of the smallest component, which doesn’t have
to be related in any way to the largest component.
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9. Do problem 27 from section 7.2.

Solution

The question statement is kinda confusing. I’m parsing it as: “Suppose some linear transformation T
sends a basis of vi to a basis of wi via T (vi) = wi. Why must T be invertible?”

T is invertible because we can give an explicit inverse from its image: take the wi = T (vi) and
construct the map T ′ that sends wi to vi. This is a well-defined map because there is only one way to
define what T does on any vector w (since wi form a basis there is only one way to decompose w into
wi, which is the heart of the problem). This is easily checked to be linear.
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