18.06 Problem Set 1 Solutions

1. Find a solution for x, y, z to the system of equations

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 10
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
3 e+\pi+2 \sqrt{2} \\
6 e+4 \pi+5 \sqrt{2} \\
10 e+7 \pi+8 \sqrt{2}
\end{array}\right)
$$

Solution $x=\pi, y=\sqrt{2}$ and $z=e$ is a solution.

2. Do problem 11 from section 2.1.

Solution by rows:

$$
\left.\begin{array}{c}
\left(\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right)\binom{4}{2}=\binom{\left(\begin{array}{ll}
2 & 3
\end{array}\right) \cdot\left(\begin{array}{ll}
4 & 2
\end{array}\right)}{\left(\begin{array}{ll}
5 & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
4 & 2
\end{array}\right)}=\binom{14}{22} \\
\left(\begin{array}{cc}
3 & 6 \\
6 & 12
\end{array}\right)\binom{2}{-1} \\
\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
(36) \cdot(2
\end{array}\right)\left(\begin{array}{l}
3 \\
(6
\end{array} 12\right) \cdot(2
\end{array}\right)=\binom{0}{0}=\binom{\left(\begin{array}{lll}
1 & 2 & 4
\end{array}\right) \cdot\left(\begin{array}{lll}
3 & 1 & 1
\end{array}\right)}{\left(\begin{array}{lll}
2 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{lll}
3 & 1 & 1
\end{array}\right)}=\binom{9}{7} .
$$

Solution by columns:

$$
\begin{gathered}
\left(\begin{array}{ll}
2 & 3 \\
5 & 1
\end{array}\right)\binom{4}{2}=4\binom{2}{5}+2\binom{3}{1}=\binom{14}{22} \\
\left(\begin{array}{cc}
3 & 6 \\
6 & 12
\end{array}\right)\binom{2}{-1}=2\binom{3}{6}-1\binom{6}{12}=\binom{0}{0} \\
\left(\begin{array}{lll}
1 & 2 & 4 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
3 \\
1 \\
1
\end{array}\right)=3\binom{1}{2}+\binom{2}{0}+\binom{4}{1}=\binom{9}{7}
\end{gathered}
$$

3. Do problem 26 from section 2.1.

Solution

The matrix form for the system of equations:

$$
\left(\begin{array}{cc}
1 & -2 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{0}{6}
$$

On the row picture the two lines are the lines defined by the equations $x-2 y=0$ and $x+y=6$, and their intersection is the point (24) the solution for the system.
The column picture pictures the column vectors: $\left(\begin{array}{ll}1 & 1\end{array}\right)$ and (-21). The paralelogram show how the solution vector (06) can be written as the linear combination of the column vectors.

Figure 1: row picture

Figure 2: column picture
4. Do problem 7 from section 2.2.

Solution

The matrix form for the system of equations:

$$
\left(\begin{array}{ll}
a & 3 \\
4 & 6
\end{array}\right)\binom{x}{y}=\binom{-3}{6}
$$

The first pivot is a, thus for $a=0$ the elimination brakes down temporarily.
If $a=0$ exchange the two equations:

$$
\left(\begin{array}{ll}
4 & 6 \\
0 & 3
\end{array}\right)\binom{x}{y}=\binom{6}{-3}
$$

The system is in upper triangular form, with nonzero entries in the diagonal, thus it has a unique solution.
If $a \neq 0$, then subtract $\frac{4}{a}$. "first equation" from the "second equation" to get:

$$
\left(\begin{array}{cc}
a & 3 \\
0 & 6-3 \frac{4}{a}
\end{array}\right)\binom{x}{y}=\binom{-3}{6+3 \frac{4}{a}}
$$

The second pivot is $6-3 \frac{4}{a}$, and if $6-3 \frac{4}{a} \neq 0$ (that is if $a \neq 2$), then the matrix is upper triangular with nonzero entries in the diagonal, thus the system has a unique solution.
If $a=2$, then the system looks like:

$$
\left(\begin{array}{ll}
8 & 3 \\
0 & 0
\end{array}\right)\binom{x}{y}=\binom{-3}{12}
$$

The elimination permanently failed, the system has no solutions.
Summarizing, the elimination temporary breaks down if $a=0$, and permanently if $a=2$.
5. Do problem 31 from section 2.2.

Solution The elimination process uses only the rows over the j 'th row, thus row j is the combination of row 1 , row $2, \ldots$ and row j.
This is also true for the coordinates of the solution vector $\mathbf{b}=\left(b_{1} b_{2} \ldots b_{n}\right)$, thus the number b_{j} is a combination of $b_{1}, b_{2}, \ldots, b_{j}$. If $\mathbf{b}=\mathbf{0}$ this means, that after the elimination the j 'th coordinate of the new solution vector is a combination $b_{1}, b_{2}, \ldots, b_{j}$ which are all 0 s. Thus the new solution vector is $\mathbf{0}$ too.
However if $\mathbf{b} \neq \mathbf{u}$ then the coordinates of the new solution vector are going to be combinations of $b_{1}, b_{2}, \ldots, b_{n}$, but nort neccesarry the same. For example for

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

and $\mathbf{b}=\left(\begin{array}{ll}1 & 2) \text { the system is }, ~\end{array}\right.$

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{2}
$$

and after elimination:

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x}{y}=\binom{1}{1}
$$

so the new solution vector $(11) \neq \mathbf{b}$.
If A is lower triangular, what is the upper triangular U ?
As A is lower triangular during the elimination process the diagonal elemnents won't change. The pivots are going to be the diagonal elements, thus if none of the diagonal entries are $0 U$ is the diagonal matrix with the same diagonal as A.
6. Do problem 21 from section 2.3.

Solution

One can directly check, by writting down the exact matrices in the 3 dimensional case:

$$
E=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } F=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then $E F$ is the matrix formed from F by adding its' 1 st row two its' 2 nd row (or directly):

$$
E F=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Similarly $F E$ is the matrix formed from E by adding its' 2 nd row two its' 1 st row (or directly):

$$
F E=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

So $E F \neq F E$.
7. Do problem 23 from section 2.4.

Solution For

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$A^{2}=0$. And for

$$
\begin{aligned}
A & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
A^{2} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and $A^{3}=0$.
8. Do problem 32 from section 2.4.

Solution

The columns of $A X$ are exactly $A x_{1}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right), A x_{2}=\left(\begin{array}{lll}0 & 1 & 0\end{array}\right)$ and $A x_{3}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$, thus

$$
A X=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

9. Do problem 6 from section 2.5.

Solution

(a) $A B=A C$ multiple the equation from the left by A^{-1} (as matrix multiplication is not commutative you do need to specify the side you multiple from). We get

$$
\begin{array}{ccc}
A B & = & A C \\
A^{-1}(A B) & = & A^{-1}(A C) \\
\left(A^{-1} A\right) B & = & \left(A^{-1} A\right) C \\
B & = & C
\end{array}
$$

We are done.
(b) For

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Let

$$
B=\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right) \text { and } C=\left(\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right)
$$

Then even though $B \neq C$

$$
A B=\left(\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right)=A C
$$

(c) In the language of your choice, write a function "rowop" that takes a matrix A and replaces the second row with the original second row minus 10 times the first row.
(Hint:In Matlab you can create a file with the name "rowop.m" with header function $B=$ $\operatorname{rowop}(A)$ Useful commands are $A(2,:) * 10$ and $A(2,:)=)$

Solution see separate sheet

