							Grading
	our P		ED				
			ED				2
							3
							4
	ase	circle	your recit	ation			5
							6
R01	T 9	2-132	S. Kleiman	2-278	3-4996	kleiman	7
R02	T 10	2-132	S. Kleiman	2-278	3-4996	kleiman	8
R03	T 11	2-132	S. Sam	2-487	3-7826	ssam	9
R04	T 12	2-132	Y. Zhang	2-487	3-7826	yanzhang	
R05	T 1	2-132	V. Vertesi	2-233	3-2689	18.06	
R06	T 2	2-131	V. Vertesi	2-233	3-2689	18.06	

1 (16 pts.)

a. (8 pts) Give bases for each of the four fundamental subspaces of $A=\left[\begin{array}{cccc}1 & 0 & \pi & e \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
b. (8 pts) Give bases for each of the four fundamental subspaces of

$$
A=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & & \\
& 2 & \\
& & 3 \\
& & \\
& &
\end{array}\right]\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

(Each of the three matrices in the above product has orthogonal columns.)

This page intentionally blank.

2 (14 pts.)

Let P_{1} be the projection matrix onto the line through $(1,1,0)$ and P_{2} is the projection onto the line through $(0,1,1)$.
(a) (4 pts) What are the eigenvalues of P_{1} ?
(b) (10 pts) Compute $P=P_{2} P_{1}$. (Careful, the answer is not 0)

This page intentionally blank.

3 (10 pts.)

The nullspace of the matrix A is exactly the multiples of $(1,1,1,1,1)$.
(a) (2 pts.) How many columns are in A ?
(b) (3 pts.) What is the rank of A ?
(c) (5 pts.) Construct a 5×5 matrix A with exactly this nullspace.

This page intentionally blank.

4 (15 pts.)

Find the solution to

$$
\frac{d u}{d t}=-\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right] u
$$

starting with $u(0)=\left[\begin{array}{l}3 \\ 0\end{array}\right]$.
(Note the minus sign.)

This page intentionally blank.

5 (10 pts.)

The 3×3 matrix A satisfies $\operatorname{det}(t I-A)=(t-2)^{3}$.
(a) (2pts) What is the determinant of A ?
(b) (8pts) Describe all possible Jordan normal forms for A.

This page intentionally blank.
$6(7$ pts. $)$
The matrix $A=\left[\begin{array}{cc}1 & 0 \\ C & 1\end{array}\right]$
(a) (2 pts) What are the eigenvalues of A ?
(b) (5 pts) Suppose σ_{1} and σ_{2} are the two singular values of A. What is $\sigma_{1}^{2}+\sigma_{2}^{2}$?

This page intentionally blank.

7 (8 pts.)

For each transformation below, say whether it is linear or nonlinear, and briefly explain why.
(a) (2 pts) $T(v)=v /\|v\|$
(b) $(2 \mathrm{pts}) T(v)=v_{1}+v_{2}+v_{3}$
(c) (2 pts) $T(v)=$ smallest component of v
(d) (2 pts) $T(v)=0$

This page intentionally blank.

8 (10 pts.)

V is the vector space of (at most) quadratic polynomials with basis $v_{1}=1, v_{2}=(x-1), v_{3}=$ $(x-1)^{2}$. W is the same vector space, but we will use the basis $w_{1}, w_{2}, w_{3}=1, x, x^{2}$.
(a) (5 pts) Suppose $T(p(x))=p(x+1)$. What is the 3×3 matrix for T from V to W in the indicated bases?
(b) (5 pts) Suppose $T(p(x))=p(x)$. What is the 3×3 matrix for T from V to W in the indicated bases?

This page intentionally blank.

9 (10 pts.)

In all of the following we are looking for a real 2×2 matrix or a simple and clear reason that one can not exist.

Please remember we are asking for a real 2×2 matrix.
(a) (2 pts) A with determinant -1 and singular values 1 and 1 .
(b) (2 pts) A with eigenvalues 1 and 1 and singular values 1 and 0 .
(c) (2 pts) A with eigenvalues 0 and 0 and singular values 0 and 1
(d) (2 pts) A with rank $r=1$ and determinant 1
(e) (2 pts) A with complex eigenvalues and determinant 1

This page intentionally blank.

