Grading
Your PRINTED name is: 1

2
3

Please circle your recitation:

R01	T 9	$2-132$	S. Kleiman	$2-278$	$3-4996$	kleiman
R02	T 10	$2-132$	S. Kleiman	$2-278$	$3-4996$	kleiman
R03	T 11	$2-132$	S. Sam	$2-487$	$3-7826$	ssam
R04	T 12	$2-132$	Y. Zhang	$2-487$	$3-7826$	yanzhang
R05	T 1	$2-132$	V. Vertesi	$2-233$	$3-2689$	18.06
R06	T 2	$2-131$	V. Vertesi	$2-233$	$3-2689$	18.06

1 (30 pts.)

In the following six problems produce a real 2×2 matrix with the desired properties, or argue concisely, simply, and convincingly that no example can exist.
(a) (5 pts.) A 2×2 symmetric, positive definite, Markov Matrix.
(b) (5 pts.) A 2×2 symmetric, negative definite (i.e., negative eigenvalues), Markov Matrix.
(c) (5 pts.) A 2×2 symmetric, Markov Matrix with one positive and one negative eigenvalue.
(d) (5 pts.) A 2×2 matrix $\neq 3 I$ whose only eigenvalue is the double eigenvalue 3 .
(e) (5 pts .) A 2×2 symmetric matrix $\neq 3 I$ whose only eigenvalue is the double eigenvalue 3 . (Note the word "symmetric" in problem (e).)
(f) (5 pts.) A 2×2 non-symmetric matrix with eigenvalues 1 and -1 .

This page intentionally blank.

2 (35 pts.)

Let

$$
A=-\left[\begin{array}{llll}
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4 \\
1 / 4 & 1 / 4 & 1 / 4 & 1 / 4
\end{array}\right]
$$

(Note the minus sign in the definition of A.)
(a) (15 pts.) Write down a valid SVD for A. (No partial credit for this one so be careful.)
(b) (20 pts.) The 4×4 matrix $e^{A t}=I+f(t) A$. Find the scalar function $f(t)$ in simplest possible form. (Hint: the power series is one way; eigendecomposition is another.)

This page intentionally blank.

3 (35 pts.)

(a) (15 pts.) The matrix A has independent columns. The matrix C is square, diagonal, and has positive entries. Why is the matrix $K=A^{T} C A$ positive definite? You can use any of the basic tests for positive definiteness.
(b) (20 pts.) If a diagonalizable matrix A has orthonormal eigenvectors and real eigenvalues must it be symmetric? (Briefly why or give a counterexample)

This page intentionally blank.

This page intentionally blank.

