
18.06 Problem Set 8 Solutions

Problem 1: Do problem 18 in section 6.4.
Solution

1. Suppose that A = AT and Ax = λx, Ay = 0y, and λ 6= 0. Then x is in the
column space of A, and y is in the left nullspace of A sinceN (A) = N (AT). But
C(A) and N (AT) are orthogonal complements, so x and y are perpendicular.

2. If Ay = βy with β 6= λ, then (A− βI)x = (λ− β)x and (A− βI)y = 0. Since
λ − β 6= 0 it follows that x is in the column space of A − βI and y is in the
nullspace of A− βI, and (A− βI)T = AT − βIT = A− βI. Therefore we can
replace A with A − βI in the argument of part 1 and it follows that x and y
are perpendicular.

Problem 2: Do problem 21 in section 6.4.
Solution

(a) A matrix with real eigenvalues and eigenvectors is symmetric: False. Let

A =

(
1 2
1 0

)
.

Then det(λI −A) = λ2 − λ− 2 = (λ− 2)(λ + 1), so A has eigenvalues λ1 = 2
and λ2 = −1. The eigenvectors are x1 = (2, 1)T and x2 = (−1, 1)T, so both
the eigenvalues and eigenvectors are real but A is not symmetric.

(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric: True.
If the matrix A has orthogonal eigenvectors x1, x2, . . . , xn with eigenvalues
λ1, λ2, . . . , λn, we can define si = xi

||xi|| for all i; then Asi = λisi for all i and
the si are orthonormal. Then we can diagonalize A as

A = SΛS−1

where the ith column of S is si, and Λ is the diagonal matrix whose (i.i)th entry
is λi. In particular S is an orthogonal matrix, so ST = S−1 and A = SΛST.
But now

AT = (ST)TΛTST = SΛST = A

so A is symmetric.
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(c) The inverse of a symmetric matrix is symmetric: True. If A is symmetric then
it can be diagonalized by an orthogonal matrix Q, A = QΛQ−1, and then
A−1 = QΛ−1Q−1 = QΛ−1QT. Since Λ−1 is still a diagonal matrix, it follows
as in part (b) that (A−1)T = QΛ−1QT = A−1.

(d) The eigenvector matrix S of a symmetric matrix is symmetric: False. Example
1 in section 6.4 computes the eigenvalues and eigenvectors of

A =

(
1 2
2 4

)
to be λ1 = 0, x1 = (2,−1)T and λ2 = 5, x2 = (1, 2)T. We can diagonalize A
with eigenvector matrix

S =

(
2 1
−1 2

)
,

which is not symmetric.

Problem 3: Do problem 27 in section 6.4.
Solution The matrix

A + tB =

(
1 0
0 2

)
+ t

(
8 1
1 0

)
=

(
1 + 8t t

t 2

)
has characteristic polynomial det(λI − A) = λ2 − (8t + 3)λ + (2 + 16t − t2), so its
eigenvalues are

λ =
1

2

(
8t + 3±

√
(8t + 3)2 − 4(2 + 16t− t2)

)
=

1

2

(
8t + 3±

√
68t2 − 16t + 1

)
and ||λ1 − λ2|| =

√
68t2 − 16t + 1 =

√
(4(17t− 2)2 + 1)/17. This is minimized at

t = 2
17

, so the minimum distance between the two eigenvalues is ||λ1(t) − λ2(t)|| =√
1/17 ≈ 0.243.

Problem 4: Do problem 7 in section 6.5.
Solution Using the fact that RTR is positive definite if and only if the columns of
R are independent, it is easy to check that RTR is positive definite for

R =

(
1 2
0 3

)
and R =

 1 1
1 2
2 1
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but not for

R =

(
1 1 2
1 2 1

)
since its columns satisfy the equation

3

(
1
1

)
−

(
1
2

)
−

(
2
1

)
=

(
0
0

)
.

Problem 5: Do problem 12 in section 6.5.
Solution Since a 3× 3 matrix is positive definite if and only if its three upper left
determinants are positive, the matrix

A =

 c 1 1
1 c 1
1 1 c


is positive definite precisely when det(c) > 0, det

(
c 1
1 c

)
> 0, and det(A) > 0.

The first two conditions are c > 0 and c2 − 1 > 0, so we require c > 1. Using the
big formula we compute

det(A) = c3 + 1 + 1− c− c− c

= c3 − 3c + 2

= (c− 1)3 + 3(c− 1)2,

and so for c > 1 we see that det(A) > 0 as well. Therefore A is positive definite
whenever c > 1.

The three upper left determinants of

B =

 1 2 3
2 d 4
3 4 5


are 1, det

(
1 2
2 d

)
= d − 4, and det(B); the first two are positive for all d > 4.

Using the big formula again, we find

det(B) = 5d + 24 + 24− 16− 20− 9d

= −4d + 12
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which is positive for d < 3. But we can’t satisfy both d > 4 and d < 3, so B is never
positive definite.

Problem 6: Do problem 22 in section 6.5.

Solution The matrix A =

(
5 4
4 5

)
has eigenvalues λ1 = 1 and λ2 = 9 with

eigenvectors x1 = (−1, 1)T and x2 = (1, 1)T, and both of these eigenvectors have

length
√

2, so the eigenvector matrix Q = 1√
2

(
−1 1
1 1

)
is orthogonal and A =

QΛQT with Λ =

(
1 0
0 9

)
. The positive definite symmetric square root of A is

then

R = QΛ1/2QT =
1√
2

(
−1 1
1 1

)
·
(

1 0
0 3

)
· 1√

2

(
−1 1
1 1

)
=

1

2

(
−1 1
1 1

) (
−1 1
3 3

)
=

(
2 1
1 2

)
,

and we can check that

R2 =

(
2 1
1 2

) (
2 1
1 2

)
=

(
5 4
4 5

)
= A.

The matrix A =

(
10 6
6 10

)
has eigenvalues λ1 = 4 and λ2 = 16 with eigenvec-

tors x1 = (−1, 1)T and x2 = (1, 1)T, so A = QΛQT where Q is the same eigenvector

matrix as before and Λ =

(
4 0
0 16

)
. Its square root is

R = QΛ1/2QT =
1√
2

(
−1 1
1 1

)
·
(

2 0
0 4

)
· 1√

2

(
−1 1
1 1

)
=

1

2

(
−1 1
1 1

) (
−2 2
4 4

)
=

(
3 1
1 3

)
,

and indeed

R2 =

(
3 1
1 3

) (
3 1
1 3

)
=

(
10 6
6 10

)
= A.
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