18.06 Problem Set 8 Solutions

Problem 1: Do problem 18 in section 6.4.
Solution

1. Suppose that $A=A^{\top}$ and $A x=\lambda x, A y=0 y$, and $\lambda \neq 0$. Then x is in the column space of A, and y is in the left nullspace of A since $\mathcal{N}(A)=\mathcal{N}\left(A^{\top}\right)$. But $\mathcal{C}(A)$ and $\mathcal{N}\left(A^{\boldsymbol{\top}}\right)$ are orthogonal complements, so x and y are perpendicular.
2. If $A y=\beta y$ with $\beta \neq \lambda$, then $(A-\beta I) x=(\lambda-\beta) x$ and $(A-\beta I) y=0$. Since $\lambda-\beta \neq 0$ it follows that x is in the column space of $A-\beta I$ and y is in the nullspace of $A-\beta I$, and $(A-\beta I)^{\top}=A^{\top}-\beta I^{\top}=A-\beta I$. Therefore we can replace A with $A-\beta I$ in the argument of part 1 and it follows that x and y are perpendicular.

Problem 2: Do problem 21 in section 6.4.

Solution

(a) A matrix with real eigenvalues and eigenvectors is symmetric: False. Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)
$$

Then $\operatorname{det}(\lambda I-A)=\lambda^{2}-\lambda-2=(\lambda-2)(\lambda+1)$, so A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-1$. The eigenvectors are $x_{1}=(2,1)^{\top}$ and $x_{2}=(-1,1)^{\top}$, so both the eigenvalues and eigenvectors are real but A is not symmetric.
(b) A matrix with real eigenvalues and orthogonal eigenvectors is symmetric: True. If the matrix A has orthogonal eigenvectors $x_{1}, x_{2}, \ldots, x_{n}$ with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, we can define $s_{i}=\frac{x_{i}}{\left\|x_{i}\right\|}$ for all i ; then $A s_{i}=\lambda_{i} s_{i}$ for all i and the s_{i} are orthonormal. Then we can diagonalize A as

$$
A=S \Lambda S^{-1}
$$

where the i th column of S is s_{i}, and Λ is the diagonal matrix whose (i.i) th entry is λ_{i}. In particular S is an orthogonal matrix, so $S^{\boldsymbol{\top}}=S^{-1}$ and $A=S \Lambda S^{\top}$. But now

$$
A^{\boldsymbol{\top}}=\left(S^{\boldsymbol{\top}}\right)^{\boldsymbol{\top}} \Lambda^{\top} S^{\top}=S \Lambda S^{\boldsymbol{\top}}=A
$$

so A is symmetric.
(c) The inverse of a symmetric matrix is symmetric: True. If A is symmetric then it can be diagonalized by an orthogonal matrix $Q, A=Q \Lambda Q^{-1}$, and then $A^{-1}=Q \Lambda^{-1} Q^{-1}=Q \Lambda^{-1} Q^{\top}$. Since Λ^{-1} is still a diagonal matrix, it follows as in part (b) that $\left(A^{-1}\right)^{\top}=Q \Lambda^{-1} Q^{\top}=A^{-1}$.
(d) The eigenvector matrix S of a symmetric matrix is symmetric: False. Example 1 in section 6.4 computes the eigenvalues and eigenvectors of

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right)
$$

to be $\lambda_{1}=0, x_{1}=(2,-1)^{\top}$ and $\lambda_{2}=5, x_{2}=(1,2)^{\top}$. We can diagonalize A with eigenvector matrix

$$
S=\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right)
$$

which is not symmetric.
Problem 3: Do problem 27 in section 6.4.
Solution The matrix

$$
A+t B=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)+t\left(\begin{array}{ll}
8 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1+8 t & t \\
t & 2
\end{array}\right)
$$

has characteristic polynomial $\operatorname{det}(\lambda I-A)=\lambda^{2}-(8 t+3) \lambda+\left(2+16 t-t^{2}\right)$, so its eigenvalues are

$$
\begin{aligned}
\lambda & =\frac{1}{2}\left(8 t+3 \pm \sqrt{(8 t+3)^{2}-4\left(2+16 t-t^{2}\right)}\right) \\
& =\frac{1}{2}\left(8 t+3 \pm \sqrt{68 t^{2}-16 t+1}\right)
\end{aligned}
$$

and $\left\|\lambda_{1}-\lambda_{2}\right\|=\sqrt{68 t^{2}-16 t+1}=\sqrt{\left(4(17 t-2)^{2}+1\right) / 17}$. This is minimized at $t=\frac{2}{17}$, so the minimum distance between the two eigenvalues is $\left\|\lambda_{1}(t)-\lambda_{2}(t)\right\|=$ $\sqrt{1 / 17} \approx 0.243$.

Problem 4: Do problem 7 in section 6.5.
Solution Using the fact that $R^{\top} R$ is positive definite if and only if the columns of R are independent, it is easy to check that $R^{\top} R$ is positive definite for

$$
R=\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right) \text { and } R=\left(\begin{array}{ll}
1 & 1 \\
1 & 2 \\
2 & 1
\end{array}\right)
$$

but not for

$$
R=\left(\begin{array}{lll}
1 & 1 & 2 \\
1 & 2 & 1
\end{array}\right)
$$

since its columns satisfy the equation

$$
3\binom{1}{1}-\binom{1}{2}-\binom{2}{1}=\binom{0}{0}
$$

Problem 5: Do problem 12 in section 6.5.
Solution Since a 3×3 matrix is positive definite if and only if its three upper left determinants are positive, the matrix

$$
A=\left(\begin{array}{lll}
c & 1 & 1 \\
1 & c & 1 \\
1 & 1 & c
\end{array}\right)
$$

is positive definite precisely when $\operatorname{det}(c)>0$, $\operatorname{det}\left(\begin{array}{ll}c & 1 \\ 1 & c\end{array}\right)>0$, and $\operatorname{det}(A)>0$. The first two conditions are $c>0$ and $c^{2}-1>0$, so we require $c>1$. Using the big formula we compute

$$
\begin{aligned}
\operatorname{det}(A) & =c^{3}+1+1-c-c-c \\
& =c^{3}-3 c+2 \\
& =(c-1)^{3}+3(c-1)^{2}
\end{aligned}
$$

and so for $c>1$ we see that $\operatorname{det}(A)>0$ as well. Therefore A is positive definite whenever $c>1$.

The three upper left determinants of

$$
B=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & d & 4 \\
3 & 4 & 5
\end{array}\right)
$$

are 1, $\operatorname{det}\left(\begin{array}{ll}1 & 2 \\ 2 & d\end{array}\right)=d-4$, and $\operatorname{det}(B)$; the first two are positive for all $d>4$. Using the big formula again, we find

$$
\begin{aligned}
\operatorname{det}(B) & =5 d+24+24-16-20-9 d \\
& =-4 d+12
\end{aligned}
$$

which is positive for $d<3$. But we can't satisfy both $d>4$ and $d<3$, so B is never positive definite.

Problem 6: Do problem 22 in section 6.5.
Solution The matrix $A=\left(\begin{array}{cc}5 & 4 \\ 4 & 5\end{array}\right)$ has eigenvalues $\lambda_{1}=1$ and $\lambda_{2}=9$ with eigenvectors $x_{1}=(-1,1)^{\top}$ and $x_{2}=(1,1)^{\top}$, and both of these eigenvectors have length $\sqrt{2}$, so the eigenvector matrix $Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)$ is orthogonal and $A=$ $Q \Lambda Q^{\top}$ with $\Lambda=\left(\begin{array}{ll}1 & 0 \\ 0 & 9\end{array}\right)$. The positive definite symmetric square root of A is then

$$
\begin{aligned}
R=Q \Lambda^{1 / 2} Q^{\top} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & 3
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
3 & 3
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
\end{aligned}
$$

and we can check that

$$
R^{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right)=A
$$

The matrix $A=\left(\begin{array}{cc}10 & 6 \\ 6 & 10\end{array}\right)$ has eigenvalues $\lambda_{1}=4$ and $\lambda_{2}=16$ with eigenvectors $x_{1}=(-1,1)^{\top}$ and $x_{2}=(1,1)^{\top}$, so $A=Q \Lambda Q^{\top}$ where Q is the same eigenvector matrix as before and $\Lambda=\left(\begin{array}{cc}4 & 0 \\ 0 & 16\end{array}\right)$. Its square root is

$$
\begin{aligned}
R=Q \Lambda^{1 / 2} Q^{\top} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
2 & 0 \\
0 & 4
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
-2 & 2 \\
4 & 4
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

and indeed

$$
R^{2}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)=\left(\begin{array}{cc}
10 & 6 \\
6 & 10
\end{array}\right)=A
$$

