18.06 Problem Set 6 Solutions

Problem 1: Do problem 39 from section 5.3.
Solution Recall that $A^{-1}=C^{T} / \operatorname{det}(A)$. If we know $\operatorname{det}(A)$, then we get A^{-1}, hence find A. For the determinant, take determinants of both sides of the above equation. we have, $\operatorname{det}\left(A^{-1}\right)=1 / \operatorname{det}(A)=\operatorname{det}\left(C^{T}\right) / \operatorname{det}(A)^{4}$, hence $\operatorname{det}(A)=\operatorname{det}(C)^{1 / 3}$. We are done.

Problem 2: Do problems 6 from section 6.1.
Solution A is (lower) triangular, hence its eigenvalues are the entries on diagonal: 1 with multiplicity 2 . Similarly B is (upper) triangular, hence its eigenvalue is 1 with multiplicity 2. The characteristic equations of $A B$ and $B A$ are both $\lambda^{2}-4 \lambda+1=$ $(\lambda-2)^{2}-3=0$, hence their eigenvalues are $2 \pm \sqrt{3}$.
(a) The eigenvalues of $A B$ are not the product of eigenvalues of A and B.
(b) $A B$ and $B A$ have the same characteristic equation, hence the same eigenvalues.

Problem 3: Problem 19 section 6.1.
Solution (a) B has 0 as its eigenvalue with multiplicity 1. Hence its null space has dimension 1 , and the rank is 2 .
(b) $\left|B^{T} B\right|=\left|B^{T}\right||B|=|B|^{2}=0$.
(c) Let $B_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$ and $B_{2}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right)$. Then $B_{1}^{T} B_{1}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)$ and $B_{2}^{T} B_{2}=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right)$. We see that even though B_{1} and B_{2} both have eigenvalues 0,1 and $2, B_{1}^{T} B_{1}$ and $B_{2}^{T} B_{2}$ have different eigenvalues. So the information is not enough.
(d) $B^{2}+I$ has eigenvalues 1,2 and 5 . Hence $\left(B^{2}+I\right)^{-1}$ has eigenvalues $1,1 / 2$ and $1 / 5$.

Problem 4: Problem 9 section 6.2.
Solution $A=\left(\begin{array}{cc}1 / 2 & 1 / 2 \\ 1 & 0\end{array}\right)$.
(a) The characteristic equation is $\lambda^{2}-1 / 2 \lambda-1 / 2=(\lambda-1)(\lambda+1 / 2)=0$, hence eigenvalues are 1 and $-1 / 2$. For 1 , the eigenvector is $(1,1)^{T}$, and for $-1 / 2$, the eigenvector is $(1,-2)^{T}$.

> (b) As $n \rightarrow \infty, \Lambda^{n} \rightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Therefore $A^{n} \rightarrow\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)^{-1}=$ $\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{cc}2 / 3 & 1 / 3 \\ 1 / 3 & -1 / 3\end{array}\right)=\left(\begin{array}{ll}2 / 3 & 1 / 3 \\ 2 / 3 & 1 / 3\end{array}\right)$
> $\left(\right.$ c) $A^{\infty}\binom{1}{0}=\binom{2 / 3}{2 / 3}$. Hence Gibonacci numbers approach $2 / 3$.

Problem 5: Do problem 11 in section 6.2.
Solution (a) True, since 0 is not an eigenvalue.
(b)\&(c) False. We cannot tell if A is diagonalizable or not. For example, $\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right)$ and $\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 5\end{array}\right)$ both have eigenvalues 2,2 and 5 , but the first one is diagonalizable (already diagonal) and the second one is not diagonalizable.

Problem 6: Do problem 12 in section 6.2.
Solution (a) False. $A=\left(\begin{array}{cc}4 & 1 \\ -16 & 12\end{array}\right)$ is a counterexample.
(b) True. A is a 2×2 matrix, and if it has two distinct eigenvalues then there must be two eigenvectors.
(c) True.

Problem 7: Let Q be an n by n orthogonal matrix. Let A, B, and C be n by n matrices.
(a) Show that $\operatorname{det}\left(Q A Q^{T}\right)=\operatorname{det}(A)$.

$$
\text { Solution } \operatorname{det}\left(Q A Q^{T}\right)=\operatorname{det}(Q) \operatorname{det}(A) \operatorname{det}\left(Q^{T}\right)=\operatorname{det}(A) \operatorname{det}\left(Q Q^{T}\right)=\operatorname{det}(A) \text {. }
$$

(b) The trace of A is the sum of the diagonal entries. $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$. Show that $\operatorname{tr}(B C)=\operatorname{tr}(C B)$.

$$
\text { Solution } \operatorname{tr} A B=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} b_{j i}=\sum_{j=1}^{n} \sum_{i=1}^{n} b_{j i} a_{i j}=\operatorname{tr} B A \text {. }
$$

(c) Use the result of part (b) to show that $\operatorname{tr}\left(Q A Q^{T}\right)=\operatorname{tr}(A)$.

$$
\text { Solution } \operatorname{tr}\left(Q A Q^{T}\right)=\operatorname{tr}\left(A Q^{T} Q\right)=\operatorname{tr}(A) \text {. }
$$

(d) Consider the matrix $A-\lambda I$. Use the big determinant formula to show that $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n.
Solution In the big formula, determinant is expressed as a sum of product of entries from each column. Since each entry of $A-\lambda I$ is a polynomial of λ, its determinant is also a polynomial of λ. Moreover, it has the only one combination of entries that makes the largest degree polynomial: the product of diagonal entries. It has degree n, hence the determinant is a polynomial of degree n .
(e) So now we have

$$
\operatorname{det}(A-\lambda I)=\sum_{i=0}^{n} c_{i} \lambda^{i}
$$

where c_{i} just denotes the coefficient of the term λ^{i} in this polynomial. In the case that the dimension of A is 2 by 2 , identify the coefficients of this polynomial in terms of trace and determinant.

Solution When $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \operatorname{det}(A-\lambda I)=(a-\lambda)(d-\lambda)-b c=\lambda^{2}-$ $(\operatorname{tr} A) \lambda+\operatorname{det} A$.
(d) Show that each coefficient c_{i} is invariant in the sense that, given orthogonal matrix Q :

$$
\operatorname{det}\left(Q A Q^{T}-\lambda I\right)=\operatorname{det}(A-\lambda I)
$$

Solution $\operatorname{det}\left(Q A Q^{T}-\lambda I\right)=\operatorname{det}\left(Q(A-\lambda I) Q^{T}\right)=\operatorname{det}(A-\lambda I)$

