18.06 Problem Set 6

Due Wednesday, 4 November 2008 at 4 pm in 2-106.

Please note that the book problems listed below are out of the 4th edition. Please make sure to check that you are doing the correct problems.

Problem 1: Do problem 39 from section 5.3.

Problem 2: Do problems 6 from section 6.1.

Problem 3: Problem 19 section 6.1.

Problem 4: Problem 9 section 6.2.

Problem 5: Do problem 11 in section 6.2.

Problem 6: Do problem 12 in section 6.2.

Problem 7: Let Q be an n by n orthogonal matrix. Let A, B, and C be n by n matrices.
(a) Show that $\operatorname{det}\left(Q A Q^{T}\right)=\operatorname{det}(A)$.
(b) The trace of A is the sum of the diagonal entries. $\operatorname{tr} A=\sum_{i=1}^{n} a_{i i}$. Show that $\operatorname{tr}(B C)=\operatorname{tr}(C B)$.
(c) Use the result of part (b) to show that $\operatorname{tr}\left(Q A Q^{T}\right)=\operatorname{tr}(A)$.
(d) Consider the matrix $A-\lambda I$. Use the big determinant formula to show that $\operatorname{det}(A-\lambda I)$ is a polynomial of degree n.
(e) So now we have

$$
\operatorname{det}(A-\lambda I)=\sum_{i=0}^{n} c_{i} \lambda^{i},
$$

where c_{i} just denotes the coefficient of the term λ^{i} in this polynomial. In the case that the dimension of A is 2 by 2 , identify the coefficients of this polynomial in terms of trace and determinant.
(d) Show that each coefficient c_{i} is invariant in the sense that, given orthogonal matrix Q :

$$
\operatorname{det}\left(Q A Q^{T}-\lambda I\right)=\operatorname{det}(A-\lambda I)
$$

