### 18.06 Problem Set 5 Solutions

Problem 1: Do problems 5 and 6 from section 4.2.

## Solution

(5) For $\mathbf{a}_{1}=(-1,2,2)$, the projection matrix is $P_{1}=\frac{1}{9}\left(\begin{array}{ccc}1 & -2 & -2 \\ -2 & 4 & 4 \\ -2 & 4 & 4\end{array}\right)$.

For $\mathbf{a}_{2}=(2,2,-1)$, the projection matrix is $P_{2}=\frac{1}{9}\left(\begin{array}{ccc}4 & 4 & -2 \\ 4 & 4 & -2 \\ -2 & -2 & 1\end{array}\right)$.
We compute to see $P_{1} P_{2}=0$. This is because $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$ are perpendicular. Precisely, if you project a vector $\mathbf{b}$ to $\mathbf{a}_{1}$, then it results a vector $\mathbf{p}$ on the same line as $\mathbf{a}_{1}$, whose projection to $\mathbf{a}_{2}$ is zero.
(6) In this case, $A=\left(\begin{array}{cc}-1 & 2 \\ 2 & 2 \\ 2 & -1\end{array}\right)$. We compute $A^{T} A=\left(\begin{array}{cc}10 & 0 \\ 0 & 10\end{array}\right)$, and $\mathbf{p}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=\left(\begin{array}{c}\frac{1}{2} \\ \frac{1}{5} \\ 0\end{array}\right)$. The projection of $\mathbf{b}$ onto $\mathbf{a}_{3}$ is $\mathbf{p}_{3}=P_{3} \mathbf{b}=\left(\begin{array}{c}\frac{4}{9} \\ -\frac{2}{9} \\ \frac{4}{9}\end{array}\right)$.

The projection $\mathbf{p}_{1}=P_{1} \mathbf{b}=\left(\begin{array}{c}\frac{1}{9} \\ -\frac{2}{9} \\ -\frac{2}{9}\end{array}\right)$.
The projection $\mathbf{p}_{2}=P_{2} \mathbf{b}=\left(\begin{array}{c}\frac{4}{9} \\ \frac{4}{9} \\ -\frac{2}{9}\end{array}\right)$.
So $\mathbf{p}_{1}+\mathbf{p}_{1}+\mathbf{p}_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$, which is $\mathbf{b}$ ! The reason is that $\mathbf{a}_{3}$ is perpendicular to $\mathbf{a}_{1}$ and $\mathbf{a}_{2}$, hence when you compute the three projections of a vector and add them up you get back to the vector you start with.
Problem 2: Do problems 17 and 18 from section 4.2.

## Solution

(17) Denote the number of columns of $P$ by $n$. Apply $(I-P)^{2}$ to any vector $\mathbf{b}$ in $\mathbb{R}^{n}$, we have

$$
(I-P)^{2} \mathbf{b}=(I-P)(b-P \mathbf{b})=b-P \mathbf{b}-P \mathbf{b}+P^{2} \mathbf{b}=b-P \mathbf{b}
$$

as $P^{2} \mathbf{b}=P \mathbf{b}$. That is,

$$
(I-P)^{2} \mathbf{b}=(I-P) \mathbf{b}
$$

We take $\mathbf{b}$ to be $\mathbf{e}_{i}$, then the above equality means the $i$-th column of $(I-P)^{2}$ is equal to the $i$-th column of $(I-P)$. As $i$ can be $1, \cdots, n$, we must have $(I-P)^{2}=(I-P)$.

Note $(I-P) \mathbf{b}=b-P \mathbf{b}$. If $P \mathbf{b}$ is in the column space of $A$, then $b-P \mathbf{b}$ is a vector perpendicular to $C(A)$, hence is in the left nullspace of $A$. In a word, $I-P$ projects to the left nullspace.
(18)(a) This is left nullspace in $\mathbb{R}^{2}$ of the line through $(1,1)$, which is the line through $(1,-1)$.
(b) This is left nullspace in $\mathbb{R}^{3}$ of the line through $(1,1,1)$, which is the plane through $(1,-1,0)$ and $((0,1,-1))$.
Problem 3: Problem 2 section 4.3.

## Solution

For $\mathbf{b}$, the linear system is

$$
\left\{\begin{array}{l}
C+D \cdot 0=0 \\
C+D \cdot 1=8 \\
C+D \cdot 3=8 \\
C+D \cdot 4=20
\end{array}\right.
$$

For $\mathbf{p}$, the linear system is

$$
\left\{\begin{array}{l}
C+D \cdot 0=1 \\
C+D \cdot 1=5 \\
C+D \cdot 3=13 \\
C+D \cdot 4=17
\end{array}\right.
$$

The solution is $C=1, D=4$.
Problem 4: Problem 12 section 4.3.

## Solution

(a)

$$
\hat{x}=\frac{a^{T} b}{a^{t} a}=\frac{b_{1}+\cdots+b_{m}}{1+\cdots+1}=\frac{b_{1}+\cdots+b_{m}}{m} .
$$

(b) $e_{i}=b_{i}-(\mathbf{a} \hat{x})_{i}=b_{i}-\frac{\sum_{1 \leq i \leq m} b_{i}}{m}$. So

$$
\|\mathbf{e}\|^{2}=\sum_{1 \leq i \leq m} e_{i}^{2}=\sum_{1 \leq i \leq m}\left(b_{i}^{2}-\frac{2 b_{i} \sum_{1 \leq i \leq m} b_{i}}{m}+\frac{\left(\sum_{1 \leq i \leq m} b_{i}\right)^{2}}{m^{2}}\right.
$$

$$
=\sum_{1 \leq i \leq m} b_{i}^{2}-\frac{2\left(\sum_{1 \leq i \leq m} b_{i}\right)^{2}}{m}+\frac{\left(\sum_{1 \leq i \leq m} b_{i}\right)^{2}}{m}=\sum_{1 \leq i \leq m} b_{i}^{2}-\frac{\left(\sum_{1 \leq i \leq m} b_{i}\right)^{2}}{m}
$$

So

$$
\|\mathbf{e}\|=\sqrt{\sum_{1 \leq i \leq m} b_{i}^{2}-\frac{\left(\sum_{1 \leq i \leq m} b_{i}\right)^{2}}{m}}
$$

(c) In this case $\mathbf{e}=\mathbf{b}-\hat{\mathbf{b}}=(-2,-1,3)$. Easy to see it is perpendicular to
$(3,3,3)$. The projection matrix is $\left(a^{t} a\right)^{-1} a a^{t}=\frac{1}{3}\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right)$.
Problem 5: Do problem 14 in section 4.3.

## Solution

Note $\hat{x}=\left(A^{T} A\right)^{-1} A^{T} b$. We see

$$
\left.\left(A^{T} A\right)^{-1} A^{T}(b-A x)=\left(A^{T} A\right)^{-1} A^{T} b-\left(A^{T} A\right)^{-1} A^{T} A x\right)=\hat{x}-x
$$

and

$$
(b-A x)^{T} A\left(A^{T} A\right)^{-1}=\left(\left(A^{T} A\right)^{-1} A^{T}(b-A x)\right)^{T}=(\hat{x}-x) .
$$

It is easy to see $\left.\left.A^{T} A\right)^{-1} A^{T} \sigma^{2} I A\left(A^{T} A\right)^{-1}=\sigma^{2} A^{T} A\right)^{-1} A^{T} A\left(A^{T} A\right)^{-1}=\sigma^{2}\left(A^{T} A\right)^{-1}$. Problem 6: Do problem 4 in section 4.4.

## Solution

(a) $Q=\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right)$.
(b) Let one be $(0,0)$ and the other be $(0,1)$.
(c) Take the $\mathbf{B}$ to be $(1,-1,0)$ and $\mathbf{c}=(1,0,0)$, because it is clear $\mathbf{A}=(1,1,1)$ is perpendicular to $\mathbf{B}$ and $\mathbf{A}, \mathbf{B}, \mathbf{c}$ are linearly independent. Then we can find

$$
\mathbf{C}=(1,1,-1)
$$

Now take

$$
\mathbf{q}_{2}=\frac{1}{\sqrt{2}}(1,-1,0), \quad \mathbf{q}_{3}=\frac{1}{3 \sqrt{2}}(1,-1,4) .
$$

Problem 7: Do problem 15 in section 4.4.
Solution
(a) Note $\mathbf{A}=(1,2,-2)$ and $\mathbf{b}=(1,-1,4)$. So

$$
\mathbf{B}=\mathbf{b}-\frac{\mathbf{A}^{T} \mathbf{b}}{\mathbf{A}^{T} \mathbf{A}} \mathbf{A}=(2,1,2)
$$

Take $\mathbf{c}=(0,0,1)$, which is easily to see to be linearly independent with $\mathbf{A}$ and b. Then compute

$$
\mathbf{C}=\mathbf{c}-\frac{\mathbf{A}^{T} \mathbf{c}}{\mathbf{A}^{T} \mathbf{A}} \mathbf{A}-\frac{\mathbf{B}^{T} \mathbf{c}}{\mathbf{B}^{T} \mathbf{c}} \mathbf{B}=(-9 / 2,2 / 9,1 / 9)
$$

So we have

$$
\begin{aligned}
\mathbf{q}_{1} & =\frac{1}{3}(1,2,-2) \\
\mathbf{q}_{2} & =\frac{1}{3}(2,1,2) \\
\mathbf{q}_{3} & =\frac{1}{3}(-2,2,1)
\end{aligned}
$$

(b) Since $\mathbf{q}_{2}$ is perpendicular to the column space of $A$, it is in the left nullspace of $A$.
(c) Using part (a), we have

$$
A=Q R=\left(\begin{array}{cc}
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3 \\
-2 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{cc}
3 & -3 \\
0 & 3
\end{array}\right)
$$

so

$$
\hat{x}=R^{-1} Q^{T} \mathbf{b}=\frac{1}{9}\left(\begin{array}{ll}
3 & 3 \\
0 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 2 / 3 & -2 / 3 \\
2 / 3 & 1 / 3 & 2 / 3
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
7
\end{array}\right)=\binom{1}{2}
$$

