
18.06 Problem Set 4 Solutions

Problem 1: Do problem 13 from section 3.6.

Solution

(a) If m = n then the row space of A equals the column space.

FALSE. Counterexample: A =

[
1 2
3 6

]
.

Here, m = n = 2 but the row space of A contains multiples of (1, 2) while the
column space of A contains multiples of (1, 3).

(b) The matrices A and −A share the same four subspaces.

TRUE. The nullspaces are identical because Ax = 0 ⇐⇒ (−A)x = 0.
The column spaces are identical because any vector v that can be expressed
as v = Ax for some x can also be expressed as v = (−A)(−x). A similar
reasoning holds for the two remaining subspaces.

(c) If A and B share the same four subspaces then A is a multiple of B.

FALSE. Any invertible 2x2 matrix will have R2 as its column space and row
space and the zero vector as its (left and right) nullspace. However, it is easy
to produce two invertible 2x2 matrices that are not multiples of each other:

A =

[
1 0
0 2

]
and B =

[
2 0
0 1

]
.

Problem 2: Do problem 25 from section 3.6.

Solution

(a) A and AT have the same number of pivots.

TRUE. The number of pivots of A is its column rank, r. We know that the
column rank of A equals the row rank of A, which is the column rank of AT.
Hence, AT must have the same number of pivots as A.
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(b) A and AT have the same left nullspace.

FALSE. Counterexample: Take any a 1x2 matrix, such as A =
[
1 1

]
. The

left nullspace of A contains vectors in R while the left nullspace of AT, which
is the right nullspace of A, contains vectors in R2, so they cannot be the same.

(c) If the row space equals the column space then AT = A.

FALSE. Counterexample: A =

[
1 2
3 4

]
.

Here, the row space and the column space are both equal to all of R2 (since
A is invertible), but A 6= AT.

(d) If AT = −A then the row space of A equals the column space.

TRUE. The row space of A equals the column space of AT, which for this
particular A equals the column space of −A. Since A and −A have the same
fundamental subspaces by part (b) of the previous question, we conclude that
the row space of A equals the column space of A.

Problem 3: Do problems 1 and 2 in section 8.2. Please note that these problems
correspond to the triangular graph.

Solution

The incidence matrix for the triangle graph is A =

−1 1 0
−1 0 1
0 −1 1

 .

In order to have a zero potential difference across every edge, the potentials
must be equal. Hence, the nullspace of A contains multiples of the vector (1,1,1).
Since the vector (1,0,0) is not perpendicular to the vector (1,1,1) in the nullspace,
it cannot be in the rowspace.

The transpose of the incidence matrix is AT =

−1 −1 0
1 0 −1
0 1 1

 .

The vector y = (1,−1, 1) is in its nullspace. This vector corresponds to a current
of 1 going around the loop formed by edges 1, 3 and the reverse of edge 2 (i.e. current
is flowing clockwise, in the direction of edges 1 and 3 but in the opposite direction
of edge 2).
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Please note that problems 4 and 5 both correspond to the square graph.

Problem 4: Do problem 8 in section 8.2.

Solution

The incidence matrix for the square graph is A =


−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 .

One solution to Ax = 0 is x = (1, 1, 1, 1). In order to solve ATy = 0, we need
to identify the closed loops in the graph. Here, there are two such loops, one formed
by edges 1,3, and the reverse of edge 2, and one formed by edges 3, 5 and the reverse
of edge 4. Hence, the vectors y1 = (1,−1, 1, 0, 0) and y2 = (0, 0, 1,−1, 1) both solve
ATy = 0.

Problem 5: Do problem 13 in section 8.2.

Solution

By computing ATCA, we get
−1 −1 0 0 0
1 0 −1 −1 0
0 1 1 0 −1
0 0 0 1 1




2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3



−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1

 =


4 −2 −2 0
−2 8 −3 −3
−2 −3 8 −3
0 −3 −3 6


We can solve ATCAx = f by grounding node 4, which gives the system of

equations  4 −2 −2
−2 8 −3
−2 −3 8

x1

x2

x3

 =

1
0
0

 .

Solving this system gives x1 = 5
12
, x2 = 1

6
, x3 = 1

6
(and x4 = 0 because we

decided to ground node 4). We can now compute the currents as

y = −CAx = −


2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3



−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1




5
12
1
6
1
6

0

 =


1
2
1
2

0
1
2
1
2

 .
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Problem 6: Do problem 21 in section 4.1.

Solution

If S is spanned by (1,2,2,3) and (1,3,3,2), then S⊥ contains all the vectors or-
thogonal to (1,2,2,3) and (1,3,3,2). To find a basis for S⊥ we need to solve Ax = 0

for A =

[
1 2 2 3
1 3 3 2

]
. Reducing A to row-echelon form gives

[
1 0 0 5
0 1 1 −1

]
. By

setting the pivot variables to zero in turn, we conclude that the nullspace is spanned
by (0,1,-1,0) and (-5,0,1,1).

Problem 7: Do problem 29 in section 4.1.

Solution

The matrix A =

1 2 3
2 4 6
3 6 9

 contains v in both its row space and column space.

The matrix B =

1 1 −1
2 2 −2
3 3 −3

 contains v in both its nullspace and column space.

v cannot be in both the row space and the nullspace of some A, or both in its col-
umn space and its left nullspace, since otherwise we would have vTv = 0 =⇒ v = 0.

Problem 8: Do problem 32 in section 4.1.

Solution

(a) We know that the row space C(AT) needs to be orthogonal to the nullspace
N(A), and that the column space C(A) needs to be orthogonal to the left
nullspace N(AT). Since the matrix A is 2x2 and all the fundamental subspaces
are 1-dimensional, this translates into two conditions: rTn = 0 and cTl = 0.

(b) Since we have bases for the row and column space of A, we can simply take
A = crT as our matrix. Since c and r are nonzero, this gives us the correct
row and column spaces, and since the conditions in (a) hold, the nullspaces

are also correct. For instance, if c = (1, 2) and r = (2, 1), we get A =

[
2 1
4 2

]
.
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