18.06 Problem Set 4 Solutions

Problem 1: Do problem 13 from section 3.6.

Solution

(a) If $m=n$ then the row space of A equals the column space.

FALSE. Counterexample: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$.
Here, $m=n=2$ but the row space of A contains multiples of $(1,2)$ while the column space of A contains multiples of $(1,3)$.
(b) The matrices A and $-A$ share the same four subspaces.

TRUE. The nullspaces are identical because $A \mathbf{x}=\mathbf{0} \quad \Longleftrightarrow \quad(-A) \mathbf{x}=\mathbf{0}$. The column spaces are identical because any vector v that can be expressed as $\mathbf{v}=A \mathbf{x}$ for some \mathbf{x} can also be expressed as $\mathbf{v}=(-A)(-\mathbf{x})$. A similar reasoning holds for the two remaining subspaces.
(c) If A and B share the same four subspaces then A is a multiple of B.

FALSE. Any invertible 2×2 matrix will have \mathbf{R}^{2} as its column space and row space and the zero vector as its (left and right) nullspace. However, it is easy to produce two invertible 2×2 matrices that are not multiples of each other:
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$.
Problem 2: Do problem 25 from section 3.6.

Solution

(a) A and A^{T} have the same number of pivots.

TRUE. The number of pivots of A is its column rank, r. We know that the column rank of A equals the row rank of A, which is the column rank of A^{T}. Hence, A^{T} must have the same number of pivots as A.
(b) A and A^{T} have the same left nullspace.

FALSE. Counterexample: Take any a 1x2 matrix, such as $A=\left[\begin{array}{ll}1 & 1\end{array}\right]$. The left nullspace of A contains vectors in \mathbf{R} while the left nullspace of A^{T}, which is the right nullspace of A, contains vectors in \mathbf{R}^{2}, so they cannot be the same.
(c) If the row space equals the column space then $A^{\mathrm{T}}=A$.

FALSE. Counterexample: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.
Here, the row space and the column space are both equal to all of \mathbf{R}^{2} (since A is invertible), but $A \neq A^{\mathrm{T}}$.
(d) If $A^{\mathrm{T}}=-A$ then the row space of A equals the column space.

TRUE. The row space of A equals the column space of A^{T}, which for this particular A equals the column space of $-A$. Since A and $-A$ have the same fundamental subspaces by part (b) of the previous question, we conclude that the row space of A equals the column space of A.

Problem 3: Do problems 1 and 2 in section 8.2. Please note that these problems correspond to the triangular graph.

Solution

The incidence matrix for the triangle graph is $A=\left[\begin{array}{ccc}-1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1\end{array}\right]$.
In order to have a zero potential difference across every edge, the potentials must be equal. Hence, the nullspace of A contains multiples of the vector $(1,1,1)$. Since the vector $(1,0,0)$ is not perpendicular to the vector $(1,1,1)$ in the nullspace, it cannot be in the rowspace.

The transpose of the incidence matrix is $A^{\mathrm{T}}=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 1\end{array}\right]$.
The vector $\mathbf{y}=(1,-1,1)$ is in its nullspace. This vector corresponds to a current of 1 going around the loop formed by edges 1,3 and the reverse of edge 2 (i.e. current is flowing clockwise, in the direction of edges 1 and 3 but in the opposite direction of edge 2).

Please note that problems 4 and 5 both correspond to the square graph.
Problem 4: Do problem 8 in section 8.2.

Solution

The incidence matrix for the square graph is $A=\left[\begin{array}{cccc}-1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1\end{array}\right]$.
One solution to $A \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=(1,1,1,1)$. In order to solve $A^{\mathrm{T}} \mathbf{y}=\mathbf{0}$, we need to identify the closed loops in the graph. Here, there are two such loops, one formed by edges 1,3 , and the reverse of edge 2, and one formed by edges 3,5 and the reverse of edge 4 . Hence, the vectors $\mathbf{y}_{\mathbf{1}}=(1,-1,1,0,0)$ and $\mathbf{y}_{\mathbf{2}}=(0,0,1,-1,1)$ both solve $A^{\mathrm{T}} \mathbf{y}=\mathbf{0}$.

Problem 5: Do problem 13 in section 8.2.

Solution

By computing $A^{T} C A$, we get

$$
\left[\begin{array}{ccccc}
-1 & -1 & 0 & 0 & 0 \\
1 & 0 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]=\left[\begin{array}{cccc}
4 & -2 & -2 & 0 \\
-2 & 8 & -3 & -3 \\
-2 & -3 & 8 & -3 \\
0 & -3 & -3 & 6
\end{array}\right]
$$

We can solve $A^{T} C A \mathbf{x}=\mathbf{f}$ by grounding node 4, which gives the system of equations

$$
\left[\begin{array}{ccc}
4 & -2 & -2 \\
-2 & 8 & -3 \\
-2 & -3 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Solving this system gives $x_{1}=\frac{5}{12}, x_{2}=\frac{1}{6}, x_{3}=\frac{1}{6}$ (and $x_{4}=0$ because we decided to ground node 4). We can now compute the currents as

$$
\mathbf{y}=-C A \mathbf{x}=-\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right]\left[\begin{array}{cccc}
-1 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1 \\
0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{c}
\frac{5}{12} \\
\frac{1}{6} \\
\frac{1}{6} \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] .
$$

Problem 6: Do problem 21 in section 4.1.

Solution

If \mathbf{S} is spanned by $(1,2,2,3)$ and $(1,3,3,2)$, then \mathbf{S}^{\perp} contains all the vectors orthogonal to $(1,2,2,3)$ and $(1,3,3,2)$. To find a basis for \mathbf{S}^{\perp} we need to solve $A \mathbf{x}=\mathbf{0}$ for $A=\left[\begin{array}{llll}1 & 2 & 2 & 3 \\ 1 & 3 & 3 & 2\end{array}\right]$. Reducing A to row-echelon form gives $\left[\begin{array}{cccc}1 & 0 & 0 & 5 \\ 0 & 1 & 1 & -1\end{array}\right]$. By setting the pivot variables to zero in turn, we conclude that the nullspace is spanned by ($0,1,-1,0$) and ($-5,0,1,1$).

Problem 7: Do problem 29 in section 4.1.

Solution

The matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9\end{array}\right]$ contains \mathbf{v} in both its row space and column space.
The matrix $B=\left[\begin{array}{lll}1 & 1 & -1 \\ 2 & 2 & -2 \\ 3 & 3 & -3\end{array}\right]$ contains \mathbf{v} in both its nullspace and column space.
\mathbf{v} cannot be in both the row space and the nullspace of some A, or both in its column space and its left nullspace, since otherwise we would have $\mathbf{v}^{T} \mathbf{v}=0 \Longrightarrow \mathbf{v}=0$.

Problem 8: Do problem 32 in section 4.1.

Solution

(a) We know that the row space $C\left(A^{\mathrm{T}}\right)$ needs to be orthogonal to the nullspace $N(A)$, and that the column space $C(A)$ needs to be orthogonal to the left nullspace $N\left(A^{\mathrm{T}}\right)$. Since the matrix A is 2 x 2 and all the fundamental subspaces are 1-dimensional, this translates into two conditions: $\mathbf{r}^{\mathrm{T}} \mathbf{n}=0$ and $\mathbf{c}^{\mathrm{T}} \mathbf{l}=0$.
(b) Since we have bases for the row and column space of A, we can simply take $A=\mathbf{c r}^{\mathrm{T}}$ as our matrix. Since \mathbf{c} and \mathbf{r} are nonzero, this gives us the correct row and column spaces, and since the conditions in (a) hold, the nullspaces are also correct. For instance, if $\mathbf{c}=(1,2)$ and $\mathbf{r}=(2,1)$, we get $A=\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]$.

