18.06 Problem Set 3 Solutions

Please note that the book problems listed below are out of the 4th edition. Please make sure to check that you are doing the correct problems.

Problem 1: Do problem 12 from section 3.3.(10pts)

Solution

If a matrix A has rank r, then the (dimension of the column space $)=($ dimension of the row space) $=\mathrm{r}$. To find an invertible submatrix S, we need to find r linearly independent rows and r linearly independent columns. The choice of these columns and rows need not be unique - however the question suggests that we take the pivot rows and pivot columns.

For matrix A, after one row and column reduction:

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \tag{1}\\
1 & 2 & 4
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Here the 1 st and $3 r d$ columns are linearly independent, while the 1 st and $2 n d$ rows are also linearly independent. Hence rank $A=2$. An appropriate submatrix is:

$$
S_{A}=\left(\begin{array}{ll}
1 & 3 \tag{2}\\
1 & 4
\end{array}\right)
$$

Note also that

$$
S_{A}=\left(\begin{array}{ll}
2 & 3 \tag{3}\\
2 & 4
\end{array}\right)
$$

would work, however

$$
S_{A}=\left(\begin{array}{ll}
1 & 2 \tag{4}\\
1 & 2
\end{array}\right)
$$

would not! For matrix B :

$$
B=\left(\begin{array}{lll}
1 & 2 & 3 \tag{5}\\
2 & 4 & 6
\end{array}\right) \sim\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0
\end{array}\right)
$$

Hence, rank $B=1$:

$$
\begin{equation*}
S_{B}=(1) \tag{6}
\end{equation*}
$$

For matrix C, the rows and columns are already reduce - we only need to permute them to obtain echelon form.

$$
C=\left(\begin{array}{lll}
0 & 1 & 0 \tag{7}\\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

rank $C=2$, deleting the first column and middle row:

$$
S_{C}=\left(\begin{array}{ll}
1 & 0 \tag{8}\\
0 & 1
\end{array}\right)
$$

Problem 2: Do problem 21 from section 3.4.(10pts)

Solution

a) $x+y+z=4$ is equivalent to the matrix equation:

$$
\begin{align*}
A \mathbf{x} & =4 \tag{9}\\
A & =\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \tag{10}
\end{align*}
$$

We seek the most general solution in the form $\mathbf{x}=\mathbf{x}_{p}+\mathbf{x}_{n}$, where \mathbf{x}_{n} is a homogeneous solution to:

$$
\begin{equation*}
A \mathbf{x}_{n}=0 \tag{11}
\end{equation*}
$$

First note that rank A is $r=1$, while the size of A is $m=1$ and $n=3$. Therefore A has infinitely many solutions. Moreover, there are $n-r=2$ linearly independent homogeneous solutions. To find the general solution, parameterize the null space as follows. Let $y=c_{1}, z=c_{2}$ (we need two constants since the dimension of the null space is 2). Write $x=4-y-z$, so that $x=4-c_{1}-c_{2}$. In vector form:

$$
\mathbf{x}=\left(\begin{array}{c}
4-c_{1}-c_{2} \tag{12}\\
c_{1} \\
c_{2}
\end{array}\right)=\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)+c_{1}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

We can check that this is a solution for any constants c_{1} and c_{2}. Specifically:

$$
\mathbf{x}_{p}=\left(\begin{array}{l}
4 \tag{13}\\
0 \\
0
\end{array}\right)
$$

is a particular solution $A \mathbf{x}_{p}=4$, while

$$
\mathbf{x}_{n}=c_{1}\left(\begin{array}{c}
-1 \tag{14}\\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

is the homogeneous solution $A \mathrm{x}_{n}=0$ (Note that the null space of A is spanned by the two linearly independent vectors $(-1,1,0)^{T}$ and $\left.(-1,0,1)^{T}\right)$
b) We have:

$$
\begin{align*}
A & =\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right) \tag{15}\\
A\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) & =\binom{4}{4} \tag{16}
\end{align*}
$$

Row reduce both sides:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 4 \tag{17}\\
1 & -1 & 1 & 4
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 4 \\
0 & -2 & 0 & \mid
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 0 & 1 & 4 \\
0 & 1 & 0 & \mid
\end{array}\right)
$$

From the row reduction, we see A has two linearly independent rows and columns so that rank $r=2, n=2$ and $m=3$. The second equation implies $y=0$. The first equation is under-determined corresponding with the fact that the null space of A has dimension $m-r=1$. To parameterize the solutions let $z=c_{1}$ so that $x=4-z=4-c_{1}$. The solution is:

$$
\begin{align*}
\mathbf{x} & =\left(\begin{array}{c}
4-c_{1} \\
0 \\
c_{1}
\end{array}\right) \tag{19}\\
& =\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right)+c_{1}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \tag{20}
\end{align*}
$$

or

$$
\begin{align*}
& \mathbf{x}_{p}=\left(\begin{array}{l}
4 \\
0 \\
0
\end{array}\right) \tag{21}\\
& \mathbf{x}_{h}=c_{1}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \tag{22}
\end{align*}
$$

Problem 3: When we perform elimination via row operations on a matrix A to end up with an upper triangular matrix U, we know this operation can be expressed as multiplication by an elimination matrix E so that $E A=U$. Why does E change the column space of A but not the nullspace? Give an example of A such that $E A$ has a different column space. Explain why the nullspace of A and U are the same. (10pts)
Solution
The product $y=A x$ (for all vectors x) defines the column space of A. Meanwhile the null space of A is any vector x such that $A x=0$. Multiplying by an elimination matrix E changes the column space (when rank $\mathrm{A}<\mathrm{n}=$ size of columns), but not the null space.

Multiplying by E acts on the rows of A. If rank A is $<$ size of the columns, then row reduction yields a zero row. A zero row implies the column space will never have components in the row with a zero. The original column space matrix product $A x$ could however have nonzero elements in any given component (Precisely, the preservation of the column space by a matrix E implies that for every vector x_{1}, there is a vector x_{2} such that $A x_{2}=E A x_{1}$. When A is not invertible (or more precisely rank $\mathrm{A}<\mathrm{n}=$ size of columns) this is false).

Multiplication by E preserves the null space of $A . E$ is the product of many elimination matrices - each of which is invertible. Hence, E is invertible. If $A x=0$, then certainly $E(A x)=E 0=0$. Meanwhile if $E A x=0$, then since E^{-1} exists, it follows that $A x=0$.

An example of A such that $E A$ has a different column space:

$$
A=\left(\begin{array}{ll}
1 & 2 \tag{23}\\
2 & 4
\end{array}\right)
$$

take

$$
E=\left(\begin{array}{cc}
1 & 0 \tag{24}\\
-2 & 1
\end{array}\right)
$$

so that

$$
E A=\left(\begin{array}{ll}
1 & 2 \tag{25}\\
0 & 0
\end{array}\right)
$$

The column space of A is:

$$
\begin{equation*}
C(A)=c\binom{1}{2} \tag{26}
\end{equation*}
$$

while the column space of $E A$ is:

$$
\begin{equation*}
C(E A)=c\binom{1}{0} \tag{27}
\end{equation*}
$$

Here c is an arbitrary constant.
A and U have the same null space. We can row reduce A by the product of many elimination matrices E so that $E A=U$. Since each elimination matrix is invertible, then the product E is also invertible. From an identical argument made above, it follows that $U x=0 \Longleftrightarrow A x=0$.

Problem 4: Suppose that a is a real, nonzero number. Consider the matrix

$$
\left(\begin{array}{cccc}
a & b & c & c \\
a & a & b & c \\
a & a & a & b \\
a & a & a & a
\end{array}\right) .
$$

Find the row reduced echelon form and the nullspace of A when:
(a) $a \neq b$ (3pts)
(b) $a=b$ and $b \neq c(4 \mathrm{pts})$
(c) $a=b=c$. (3pts)

Solution Reduce the matrix into upper triangular form:

$$
\begin{align*}
\left(\begin{array}{llll}
a & b & c & c \\
a & a & b & c \\
a & a & a & b \\
a & a & a & a
\end{array}\right) & \sim\left(\begin{array}{llll}
a & b & c & c \\
0 & a-b & b-c & 0 \\
0 & a-b & a-c & b-c \\
0 & a-b & a-c & a-c
\end{array}\right) \tag{28}\\
\sim\left(\begin{array}{llll}
a & b & c & c \\
0 & a-b & b-c & 0 \\
0 & 0 & a-b & b-c \\
0 & 0 & a-b & a-c
\end{array}\right) & \sim\left(\begin{array}{llll}
a & b & c & c \\
0 & a-b & b-c & 0 \\
0 & 0 & a-b & b-c \\
0 & 0 & 0 & a-b
\end{array}\right) \tag{29}
\end{align*}
$$

a) When $a \neq b$, the matrix has echelon form:

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \tag{30}\\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

so that the null space is just $\mathbf{x}=0$.
b) When $a=b, b \neq c$ the matrix has echelon form:

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \tag{31}\\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The null space has dimension 1:

$$
\mathbf{x}=c\left(\begin{array}{l}
1 \tag{32}\\
-1 \\
0 \\
0
\end{array}\right)
$$

c) When $a=b=c$ the matrix has echelon form:

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \tag{33}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

The null space has dimension 3:

$$
\mathbf{x}=c_{1}\left(\begin{array}{l}
1 \tag{34}\\
-1 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
1 \\
0 \\
-1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{l}
1 \\
0 \\
0 \\
-1
\end{array}\right)
$$

Problem 5: (MATLAB problem!)
(a) Define a 4 by 4 random matrix A and column vector b : $\mathrm{A}=\mathrm{rand}(4) ; \mathrm{b}=[1 ; 1 ; 1 ; 1] ;$ Solve the equation $\mathrm{Ay}=\mathrm{b}$ by typing: $\mathrm{y}=\mathrm{A} \backslash \mathrm{b}$ Type: $\mathrm{A} * \mathrm{y}-\mathrm{b}$ What do you get? (2pts)
(b) Write a program to define a matrix A such that $A_{i, j}=e^{15(i+j)}$. To do this we write:

```
for i=1:4
    for j=1:4
        A(i,j)=exp(15*(i+j));
    end
end
```

A=A.*rand(4);
$\mathrm{b}=[1 ; 1 ; 1 ; 1]$;

The command A.* rand(4) multiplies each entry in A termwise by a random number. We do this so that our matrix A is not so singluar. Now, type:
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$. What is $A x-b$? (3pts)
(c) In part (b), why is $A x-b$ so far from 0 ? Notice that $A x-b$ should be equal to 0 , because x is supposed to be a solution to the equation $A x=b$. Hint: In essence, imagine that to solve for x, MATLAB is row reducing. Note that in MATLAB $10^{-17}=0$ because MATLAB only sees 16 significant figures. (Type: format long and look at 10^{-16} and compare to 10^{-17}.) (5 pts)

Solution a) Hopefully, you get 0 .
b) You'll find $A x-b=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ \text { something large and nonzero. }\end{array}\right)$
c) The smallest element of A is $A(1,1) \sim 10^{13}$, while $A(4,4) \sim 10^{51}$. When performing floating point arithmetic, MATLAB only keeps 16 decimals (note that when inverting a random matrix, MATLAB will construct an $L U$ factorization followed by performing a sequence of forward and back substitutions). During the inversion process, the 1 's on the RHS, will be divided by numbers exceeding 10^{16}. Consequently, MATLAB effectively solves $A x=0$ and not $A x=b$.

Problem 6: Do problem 35 from section 3.2 in the book.
Solution
Expand out in block form. Let $\mathbf{u}=[\mathbf{x} ; \mathbf{y}]^{T}$ be an 8 element column vector where \mathbf{x} and \mathbf{y} are 4 element column vectors. Then $B=[A ; A]$ multiplies out:

$$
\begin{equation*}
B \mathbf{u}=A \mathbf{x}+A \mathbf{y} \tag{35}
\end{equation*}
$$

For $\mathbf{u} \in N(B)$:

$$
\begin{align*}
B \mathbf{u} & =0 \tag{36}\\
A \mathbf{x}+A \mathbf{y} & =0 \tag{37}\\
A^{-1}(A \mathbf{x}+A \mathbf{y}) & =0 \tag{38}\\
\mathbf{x} & =-\mathbf{y} \tag{39}
\end{align*}
$$

Hence, the null space is described by:

$$
\begin{equation*}
\mathbf{u}=c_{1}\binom{\mathbf{x}_{1}}{-\mathbf{x}_{1}}+c_{2}\binom{\mathbf{x}_{2}}{-\mathbf{x}_{2}}+c_{3}\binom{\mathbf{x}_{3}}{-\mathbf{x}_{3}}+c_{4}\binom{\mathbf{x}_{4}}{-\mathbf{x}_{4}} \tag{40}
\end{equation*}
$$

where the j th element of $\mathbf{x}_{i}=1$ if $j=i$ and 0 if $j \neq i$. One can also write:

$$
\mathbf{u}=\binom{I}{-I}\left(\begin{array}{l}
c_{1} \tag{41}\\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right)
$$

where I is the 4×4 identity matrix.

Problem 7:

1. Suppose A is a matrix such that $A^{2}=A$. (5pts) True or False
(a) $N(A)$ is a subspace of $C(A)$.
(b) $C(A)$ is a subspace of $N(A)$.
(c) The only vector common to both spaces is 0 .
2. Suppose A is a matrix such that $A^{2}=0$. (5pts) True or False
(a) $N(A)$ is a subspace of $C(A)$.
(b) $C(A)$ is a subspace of $N(A)$.
(c) The only vector common to both spaces is 0 .

Be sure to justify your answers and explain why each option is true, or give an example of how it fails.
Solution Question 1)

1. $N(A)$ is a subspace of $C(A)$ - False. Take

$$
A=\left(\begin{array}{ll}
1 & 0 \tag{42}\\
0 & 0
\end{array}\right)
$$

The null space is:

$$
\begin{equation*}
N(A)=c\binom{0}{1} \tag{43}
\end{equation*}
$$

The column space is:

$$
\begin{equation*}
C(A)=c\binom{1}{0} \tag{44}
\end{equation*}
$$

2. $C(A)$ is a subspace of $N(A)$ - False (same example as above).
3. The only vector common to both spaces is 0 - True. Matrices $A^{2}=A$ are called projectors. They are special in the sense that they project a vector x onto the column space of A. Explicitly, we can write $B=I-A$. Then $B^{2}=B$ (is also a projector), $A B=B A=0$ and $A+B=I$. Given any vector x, we may now uniquely decompose $x=u+v$, where $u=A x$ and $v=B x$. Now suppose $x \in C(A)$. Then $x=A y$ for some y, which means $v=B x=B A y=0$ and so $u=x$. Meanwhile if $x \in N(A)$ then $A x=0$ so that $u=0$ and $v=x$. Therefore, if $x \in N(A)$ and $x \in C(A)$, it follows that $u=v=0$, so that $x=u+v=0$. Note that for a projector A, all vectors x decompose into a piece $u \in C(A)$ and a piece $v \in N(A)$.

Question 2)

1. $N(A)$ is a subspace of $C(A)$ - False. Take

$$
A=\left(\begin{array}{lll}
0 & 0 & 1 \tag{45}\\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The null space is:

$$
N(A)=c_{1}\left(\begin{array}{l}
1 \tag{46}\\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

The column space is:

$$
C(A)=c\left(\begin{array}{l}
1 \tag{47}\\
0 \\
0
\end{array}\right)
$$

2. $C(A)$ is a subspace of $N(A)$ - True. If $x \in C(A)$ then $x=A y$ for some y. It follows that $A x=A^{2} y=0$, so that $x \in N(A)$.
3. The only vector common to both spaces is 0 - False. This follows from property 2) above with an explicit construction in 1).
