
18.06 Problem Set 1 Solutions

Problem 1: Do problem 27 from section 1.2 in the book.
Solution (10pts)
||v − w|| ≤ ||v||+ ||w|| = 5 + 3 = 8 and ||v − w|| ≥ ||v|| − ||w|| = 5− 3 = 2. (5pts)
|v · w| = ||v|| · ||w|| cos θ ≤ ||v|| · ||w||
Thus we find that −||v||||w|| ≤ |v ·w| ≤ ||v|| · ||w||. Thus the minimum value occurs
when the dot product is a small as possible: ie. v and w are parrallel, but point in
opposite directions. So smallest value is -15. The maximum value occurs when the
dot product is as large as possible, thus occurs when v and w are parallel and point
in the same direction. Thus the largest value is 15. (5pts)

Problem 2: Do problem 8 from section 2.1.
Solution (10pts)
Normally 4 ”planes” in 4-dimensional space meet at a point (2pts). Normally 4
column vectors in a 4-dimensional space can combine to produce b.
The combination of the 4 column vectors producing b is:
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1
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3
3
2

 (4pts)

The system of linear equations this is satisfying is (4pts):

x + y + z + t = 3

y + z + t = 3

z + t = 3

t = 2.

Problem 3: Do problem 11 from section 2.2.
Solution (10pts)
(a) (5pts) Suppose a system of linear equations has 2 distinct solutions x and y both
satisfying Ax = b and Ay = b. Then A(x− y) = 0, so in particular, given any real
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number t, At(x−y) = 0. Thus any vector of the form x+ t(x−y) solves the linear
system since

A(x + t(x− y)) = Ax + At(x− y)

= b + 0

. Since by hypothesis x-y is nonzero, there are infinitely many solutions to this
system corresponding to the line x + t(x − y). (b) (5pts) If 25 planes meet at two
points, the also meet in the line that passes through both of these points.

Problem 4: Do problem 21 from section 2.2.
Solution (10pts)
Begin by row reducing the augmented matrix A|b (or K|b.) (5pts each)

2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 5

 →


2 1 0 0 0
0 1.5 1 0 0
0 1 2 1 0
0 0 1 2 5

 →


2 1 0 0 0
0 3

2
1 0 0

0 0 4
3

1 0
0 0 1 2 5



→


2 1 0 0 0
0 3

2
1 0 0

0 0 4
3

1 0
0 0 0 5

4
5

 .

Thus the pivots are the diagonal entries, and the solution is


−1

2
−3

4




2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 5

 →


2 −1 0 0 0
0 1.5 −1 0 0
0 −1 2 −1 0
0 0 −1 2 5

 →


2 −1 0 0 0
0 3

2
−1 0 0

0 0 4
3
−1 0

0 0 −1 2 5



→


2 −1 0 0 0
0 3

2
−1 0 0

0 0 4
3
−1 0

0 0 0 5
4

5

 .

Thus this matrix has the same pivots, and the solution is


1
2
3
4

.
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Problem 5: Do problem 14 from section 2.3.
Solution (10pts)
Observe that these are the elimination matrices corresponding to the row reduction
performed in the previous problem part 2. Thus these elimination matrices are:

E21 =


1 0 0 0
1
2

1 0 0
0 0 1 0
0 0 0 1

 .

E32 =


1 0 0 0
0 1 0 0
0 2

3
1 0

0 0 0 1

 .

E43 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 3

4
1

 .

Problem 6: Do problem 23 from section 2.4.
Solution (10pts)
(a)(5pts) A nonzero matrix A such that A2 = 0 is :(

0 1
0 0

)
.

(b)(5pts) We use a 3 by 3 matrix. We want A such that A2 6= 0 but A3 = 0. For
example, try  0 1 1

0 0 1
0 0 0

 .

You can check that A2 =

 0 0 1
0 0 0
0 0 0

 and A3 = 0.

Problem 7: Do problem 29 in section 2.5
Solution (10pts)
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(a)(3pts) T A 4 by 4 matrix with a row of zeros can not be invertible because it can
have at most 3 pivots.
(b)(3pts) F To justify, must give a counter example. Consider for example 1 0 0

0 1 1
0 1 1

 .

This matrix has 1’s along the main diagonal, but only has 2 pivots, thus is not
invertible.
(c)(4pts) T If A is invertible, then necessarily A−1 is invertible with inverse A. If
A−1 were not invertible, there would be a nonzero vector x such that A−1x = 0.
But then

x = Ix = AA−1x = A0 = 0,

which contradicts our assumption that x was nonzero. Thus A−1 is invertible.
Similarly, suppose there were a nonzero x such that A2x = 0, then by an anal-

ogous argument, we see that

A−1A2x = (A−1A)Ax = Ax = 0.

Since A is invertible, this can only be true if x was zero to begin with. Thus A2

must also be invertible.
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