Your PRINTED name is:

Please circle your recitation:

(R01)	T10	$2-132$	HwanChul Yoo	Grading
(R02)	T11	$2-132$	HwanChul Yoo	$-\mathbf{1}$
(R03)	T12	$2-132$	David Shirokoff	
(R04)	T1	$2-131$	Fucheng Tan	$\mathbf{2}$
(R05)	T1	$2-132$	David Shirokoff	
(R06)	T2	$2-131$	Fucheng Tan	$\mathbf{3}$
(R07)	T2	$2-146$	Leonid Chindelevitch	
(R08)	T3	$2-146$	Steven Sivek	Total:

Problem 1. Let $A=\left(\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right)$.
(A) Find the eigenvalues and the eigenvectors of A.
(B) Solve the differential equation $\frac{d \mathbf{u}(t)}{d t}=A \mathbf{u}(t)$ with the initial condition $\mathbf{u}(0)=\binom{0}{2}$.
(C) Find a symmetric matrix B which is similar to A.
(D) Find the singular values σ_{1} and σ_{2} of A.

This page intentionally blank.

Problem 2. Consider the matrix

$$
A=\left(\begin{array}{lll}
1 & t & 0 \\
t & 1 & 1 \\
0 & 1 & 2
\end{array}\right)
$$

which depends on a parameter t.
(A) Find all values of the parameter t when the matrix A is positive definite.
(B) Suppose that $t=0$. Find a 3×3 matrix R such that $A=R^{T} R$.
(C) Suppose that $t=0$. Verify directly that A satisfies the energy-based definition of a positive definite matrix, as follows. For a vector $\mathbf{x}=(x, y, z)^{T}$, write out $\mathbf{x}^{T} A \mathbf{x}$; show that this can be written as a sum of squares; and deduce that $\mathbf{x}^{T} A \mathbf{x}>0$ for any non-zero \mathbf{x}.

This page intentionally blank.

Problem 3. Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2\end{array}\right)$.
(A) Indicate which of the following statements are true and which are false:
(1) A is symmetric;
(2) A is orthogonal;
(3) A is invertible;
(4) $\frac{1}{3} A$ is a Markov matrix
(B) Find the eigenvalues and the eigenvectors of A. (Hint: Part (A) might help you.)
(C) Find an orthogonal matrix Q and a diagonal matrix Λ such that $A=Q \Lambda Q^{T}$.
(D) Calculate the limit \mathbf{u}_{∞} of $\mathbf{u}_{k}=\left(\frac{1}{3} A\right)^{k} \mathbf{u}_{0}$ as $k \rightarrow \infty$, for $\mathbf{u}_{0}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$.

This page intentionally blank.

