Your PRINTED name is: _____

Please circle your recitation:

(R01)	T10	2-132	HwanChul Yoo	Grading
(R02)	T11	2-132	HwanChul Yoo	1
(R03)	T12	2-132	David Shirokoff	
(R04)	T1	2-131	Fucheng Tan	2
(R05)	T1	2-132	David Shirokoff	
(R06)	T2	2-131	Fucheng Tan	3
(R07)	T2	2-146	Leonid Chindelevitch	
(R08)	T3	2-146	Steven Sivek	Total:

Problem 1. Let $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$.

(A) Find the eigenvalues and the eigenvectors of A.

(B) Solve the differential equation $\frac{d \mathbf{u}(t)}{dt} = A \mathbf{u}(t)$ with the initial condition $\mathbf{u}(0) = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$.

(C) Find a symmetric matrix B which is similar to A.

(D) Find the singular values σ_1 and σ_2 of A.

This page intentionally blank.

Problem 2. Consider the matrix

$$A = \begin{pmatrix} 1 & t & 0 \\ t & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix},$$

which depends on a parameter t.

(A) Find all values of the parameter t when the matrix A is positive definite.

(B) Suppose that t = 0. Find a 3×3 matrix R such that $A = R^T R$.

(C) Suppose that t = 0. Verify directly that A satisfies the energy-based definition of a positive definite matrix, as follows. For a vector $\mathbf{x} = (x, y, z)^T$, write out $\mathbf{x}^T A \mathbf{x}$; show that this can be written as a sum of squares; and deduce that $\mathbf{x}^T A \mathbf{x} > 0$ for any non-zero \mathbf{x} .

This page intentionally blank.

Problem 3. Let
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
.

(A) Indicate which of the following statements are true and which are false:

- (1) A is symmetric; (2) A is orthogonal;
- (3) A is invertible; (4) $\frac{1}{3}A$ is a Markov matrix

(B) Find the eigenvalues and the eigenvectors of A. (Hint: Part (A) might help you.)

(C) Find an orthogonal matrix Q and a diagonal matrix Λ such that $A = Q\Lambda Q^T$.

(D) Calculate the limit \mathbf{u}_{∞} of $\mathbf{u}_{k} = (\frac{1}{3}A)^{k} \mathbf{u}_{0}$ as $k \to \infty$, for $\mathbf{u}_{0} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

This page intentionally blank.