Your PRINTED name is:

Please circle your recitation:

(R01)	T10	$2-132$	HwanChul Yoo	
(R02)	T11	$2-132$	HwanChul Yoo	$\mathbf{1}$
(R03)	T12	$2-132$	David Shirokoff	-
(R04)	T1	$2-131$	Fucheng Tan	$\mathbf{2}$
(R05)	T1	$2-132$	David Shirokoff	$\mathbf{3}$
(R06)	T2	$2-131$	Fucheng Tan	-
(R07)	T2	$2-146$	Leonid Chindelevitch	$\mathbf{4}$
(R08)	T3	$2-146$	Steven Sivek	

Grading

1

2
\qquad

3

4

Total:

Problem 1. Consider the matrix $A=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & 3\end{array}\right)$.
(a) Find the factorization $A=L U$.
(b) Find the inverse of A.
(c) For which values of c is the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 1 \\ 0 & 1 & c\end{array}\right)$ invertible?

Problem 2. Which of the following are subspaces? Explain why.
(a) All vectors \mathbf{x} in \mathbb{R}^{3} such that $\mathbf{x}^{T}\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)=0$.
(b) All vectors $(x, y)^{T}$ in \mathbb{R}^{2} such that $x^{2}-y^{2}=0$.
(c) All vectors $(x, y)^{T}$ in \mathbb{R}^{2} such that $x+y=2$.
(d) All vectors \mathbf{x} in \mathbb{R}^{3} which are in the column space AND in the nullspace of the matrix $\left(\begin{array}{lll}1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1\end{array}\right)$.
(e) All vectors \mathbf{x} in \mathbb{R}^{3} which are in the column space OR in the nullspace (or in both) of the matrix $\left(\begin{array}{ccc}1 & -2 & 1 \\ 1 & -2 & 1 \\ 1 & -2 & 1\end{array}\right)$.

Problem 3. Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & 1 & 2 & 2 \\
-1 & -2 & 0 & 0 & -1 \\
1 & 2 & 0 & 0 & 1
\end{array}\right)
$$

(a) Find the complete solution of the equation $A \mathbf{x}=\mathbf{0}$.
(b) Find the complete solution of the equation $A \mathbf{x}=\left(\begin{array}{c}2 \\ 1 \\ -1\end{array}\right)$.
(c) Find all vectors \mathbf{b} such that the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(d) Find a matrix B such that $N(A)=C(B)$.
(e) Find bases of the four fundamental subspaces for the matrix A.

Problem 4. Let A be an m by n matrix. Let B be an n by matrix. Suppose that $A B=I_{m}$ is the m by m identity matrix.

1. Let $r=\operatorname{rank}(A)$ denote the rank of the matrix A. Choose one answer and be sure to justify it.
(a) $r \geq m$
(b) $r \leq m$
(c) $r=m$
(d) $r>n$
2. Is $m \leq n$ or is $n \leq m$? Why?
