SOLUTIONS TO QUIZ 3

Problem 1. (6 points each)
$A=\left(\begin{array}{cc}a & c+d i \\ c-d i & b\end{array}\right)$
a) This matrix is clearly hermetian.
b) Thus, the two eigenvalues are real.
c) The sum of the eigenvalues is $\operatorname{tr}(A)=a+b$.
d) The product of the eigenvalues is $\operatorname{det}(A)=a b-(c+d i)(c-d i)=a b-\left(c^{2}+d^{2}\right)$.
e) We need to solve $\left(\begin{array}{ll}a-\lambda & c+d i \\ c-d i & b-\lambda\end{array}\right)\binom{x_{1}}{x_{2}}=0$. We see that $\binom{-(c+d i)}{a-\lambda}$ is one such (note that this solves the top row equation, and the other by singularity of the matrix).

Problem 2. (8 points each)
$A=\left(\begin{array}{cc}x & 3 / 5 \\ y & z\end{array}\right)$.
a) A is positive definite if $x>0$ and $\operatorname{det}(A)=x z-3 y / 5>0$.
b) A is Markov if $x \geq 0, y \geq 0, z \geq 0$, and $x+y=1$ and $z=2 / 5$.
c) A is singular if $0=\operatorname{det}(A)=x z-3 y / 5$.
d) Well, we need $(3 / 5)^{2}+z^{2}=1$, so $z^{2}=16 / 25$, so set $z=4 / 5$. So set $x=-4 / 5$ and $y=3 / 5$. Flip the signs around to get the other possibilities.

Problem 3. (13 points)
As F has four distinct eigenvlaues, it is diagonalizable, i.e., $F=S\left(\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 i & 0 \\ 0 & 0 & 0 & -2 i\end{array}\right) S^{-1}$. Thus $F^{4}=S\left(\begin{array}{cccc}(-2)^{4} & 0 & 0 & 0 \\ 0 & 2^{4} & 0 & 0 \\ 0 & 0 & (2 i)^{4} & 0 \\ 0 & 0 & 0 & (-2 i)^{4}\end{array}\right) S^{-1}=S\left(\begin{array}{cccc}16 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 16\end{array}\right) S^{-1}=\left(\begin{array}{cccc}16 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 16\end{array}\right)$.
As this is already a Jordan matrix, this is the Jordan form of F^{4}. The underlying reason is that F is diagonalizable, hence $\left(\begin{array}{cccc}-2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 i & 0 \\ 0 & 0 & 0 & -2 i\end{array}\right)$ is its Jordan form.

Problem 4. (25 points)
$A=\left(\begin{array}{ll}x & ? \\ ? & ?\end{array}\right)$. As A is supposed to be Markov, we must have $A=\left(\begin{array}{cc}x & y \\ 1-x & 1-y\end{array}\right)$, and A is singular implies $x(1-y)-y(1-x)=0$, therefore $0=x-x y-y+x y=x-y$, so $y=x$. Thus $A=\left(\begin{array}{cc}x & x \\ 1-x & 1-x\end{array}\right)$. As A is Markov, we know that $\lambda_{1}=1$ is an eigenvalue. As A is singular, we know that the product of the eigenvalues is 0 . Therefore, $\lambda_{2}=0$ is another eigenvalue, and so A is diagonalizable; $A=S\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) S^{-1}$. Thus $A^{2008}=$ $S\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)^{2008} S^{-1}=S\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) S^{-1}=A$.

