	Grading
Your PRINTED name is:	1
	2 3 Please circle your recitation:

1)	T 10	2-131	J.Yu	2-348	4-2597	jyu
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa
3)	T 10	2-255	Su Ho Oh	2-333	3-7826	suho
4)	T 11	2-131	J. Yu	2-348	4-2597	jyu
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale
6)	T 12	2-132	J. Pascaleff	2-492	3-4093	jpascale
7)	T 12	2-131	K. Jung	2-331	3-5029	kmjung
8)	T 1	2-131	K. Jung	2-331	3-5029	kmjung
9)	T 1	2-136	V. Sohinger	2-310	4-1231	vedran
10)	T 1	2-147	M Frankland	2-090	3-6293	franklan
11)	T 2	2-131	J. French	2-489	3-4086	jfrench
12)	T 2	2-147	M. Frankland	2-090	3-6293	franklan
13)	T 2	4-159	C. Dodd	2-492	3-4093	cdodd
14)	T 3	2-131	J. French	2-489	3-4086	jfrench
15)	T 3	4-159	C. Dodd	2-492	3-4093	cdodd

1 (30 pts.) The complex matrix

$$
A=\left[\begin{array}{cc}
a & c+d i \\
c-d i & b
\end{array}\right]
$$

where a, b, c, and $d \neq 0$ are real numbers.
In (a) and (b) below circle the one best answer to the questions:
(a) This matrix is necessarily: symmetric? Hermitian? unitary? Markov?
(b) The two eigenvalues are necessarily: real? positive? zero? complex conjugates?
(c) The sum of the two eigenvalues is
(d) The product of the two eigenvalues in terms of a, b, c, and d but not i is \qquad
(e) In terms of an eigenvalue λ (whose value you need not derive), write down an eigenvector of A.

This page intentionally blank.

2 (32 pts.) The real matrix

$$
A=\left[\begin{array}{cc}
x & 3 / 5 \\
y & z
\end{array}\right]
$$

The answers to the questions below involve alternative equations or inequalities involving x, y, and z that characterize all matrices of a certain type. Write down the relations. For (a) through (c), credit is only given for the complete description in reasonably clear and simple form.
(a) When is A positive definite? (Write two inequalities.)
(b) When is A Markov? (Perhaps write two or more inequalities, and two equalities.)
(c) When is A singular? (Write one equality)
(d) Write down one such A that is orthogonal. (There are four possible A and you are asked to write down one.)

This page intentionally blank.

3 (13 pts.) The 4 x 4 Fourier matrix F has eigenvalues $-2,2,2 i,-2 i$. Preferably without any explicit computation (or even knowledge of the matrix itself) what is the matrix F^{4} ? How do you know it has that particular Jordan form?

This page intentionally blank.

4 (25 pts.) In terms of $x(0<x<1)$ complete

$$
A=\left[\begin{array}{ll}
x & \\
&
\end{array}\right]
$$

so that A is a 2×2 matrix that is both Markov and singular.
What is $A^{2008} ?$

This page intentionally blank.

This page intentionally blank.

