QUIZ 2 SOLUTIONS

1. (10 points). $det(-A^t) = (-1)^{1000} det(A^t) = det(A)$.

2. a) (10 points). The projection matrix of a matrix A is $P = A(A^{t}A)^{-1}A^{t}$. So the projection matrix of QA is $(QA)(A^tQ^tQA)^{-1}A^tQ^t = QA(A^tA)^{-1}A^tQ^t = QPQ^t$ where we have used that $Q^t Q = I$.

b) (10 points). By definition c - Pc is orthogonal to the space $span\{a, b\} = span\{q_1, q_2\}$. So we can choose $q_3 = (c - Pc)/||c - Pc||$.

c) (10 points). Let s_1, s_2, s_3 denote the rows of Q, and r_1, r_2, r_3 denote the columns of R.

Then $c = \begin{pmatrix} s_1 \cdot r_3 \\ s_2 \cdot r_3 \\ s_3 \cdot r_3 \end{pmatrix} = Qr_3$. Since orthogonal matrices preserve the lengths of vectors, this

implies $||c|| = ||r_3||$.

3. (15 points). Well, the matrix $uu^t = (u_i u_j)_{1 \le i, j \le n}$; so $I + tuu^t = (\delta_{ij} + tu_i u_j) = Q$. In particular, this matrix is symmetric, so the orthogonality condition reduces to $Q^2 = I$. Writing this condition out gives $I = (I + tuu^t)(I + tuu^t) = I + 2tuu^t + t^2(uu^t)^2$, or equivalently $t(2uu^t + t(uu^t)^2) = 0$. But now we have that $(uu^t)^2 = u(u^t u)u^t = uu^t$ because $u^t u = 1$ (*u* has length 1). So our equation becomes $t(2+t)(uu^t) = 0$. Clearly t = 0 and t = -2 are the solutions.

4. (15 points). We have that C + Dt + (1 - E)t = (C + E) + (D - E)t. Thus we see that E is a free variable: it is not uniquely determined, and in fact can take any value. Given this, just write down the usual least squares equations but treat C + E and D - E as your variables: the matrix A has two columns: the first consists of n 1's, the second is the vector (*t_i*). Then solve $A^t A \begin{pmatrix} C+E\\ D-E \end{pmatrix} = A^t b$. **5.** a) (15 points). Yes. As *A* is invertible, it's column space is the full space \mathbb{R}^n . The

same is true of A^{-1} .

b) (15 points). No. consider $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. It has nonzero column space, but its square is 0.