QUIZ 2 SOLUTIONS

1. $(10$ points $) \cdot \operatorname{det}\left(-A^{t}\right)=(-1)^{1000} \operatorname{det}\left(A^{t}\right)=\operatorname{det}(A)$.
2. a) (10 points). The projection matrix of a matrix A is $P=A\left(A^{t} A\right)^{-1} A^{t}$. So the projection matrix of $Q A$ is $(Q A)\left(A^{t} Q^{t} Q A\right)^{-1} A^{t} Q^{t}=Q A\left(A^{t} A\right)^{-1} A^{t} Q^{t}=Q P Q^{t}$ where we have used that $Q^{t} Q=I$.
b) (10 points). By defintion $c-P c$ is orthogonal to the space $\operatorname{span}\{a, b\}=\operatorname{span}\left\{q_{1}, q_{2}\right\}$. So we can choose $q_{3}=(c-P c) /\|c-P c\|$.
c) (10 points). Let s_{1}, s_{2}, s_{3} denote the rows of Q, and r_{1}, r_{2}, r_{3} denote the columns of R. Then $c=\left(\begin{array}{l}s_{1} \cdot r_{3} \\ s_{2} \cdot r_{3} \\ s_{3} \cdot r_{3}\end{array}\right)=Q r_{3}$. Since orthogonal matrices preserve the lengths of vectors, this implies $\|c\|=\left\|r_{3}\right\|$.
3. (15 points). Well, the matrix $u u^{t}=\left(u_{i} u_{j}\right)_{1 \leq i, j \leq n}$; so $I+t u u^{t}=\left(\delta_{i j}+t u_{i} u_{j}\right)=Q$. In particular, this matrix is symmetric, so the orthogonality condition reduces to $Q^{2}=I$. Writing this condition out gives $I=\left(I+t u u^{t}\right)\left(I+t u u^{t}\right)=I+2 t u u^{t}+t^{2}\left(u u^{t}\right)^{2}$, or equivalently $t\left(2 u u^{t}+t\left(u u^{t}\right)^{2}\right)=0$. But now we have that $\left(u u^{t}\right)^{2}=u\left(u^{t} u\right) u^{t}=u u^{t}$ because $u^{t} u=1$ (u has length 1). So our equation becomes $t(2+t)\left(u u^{t}\right)=0$. Clearly $t=0$ and $t=-2$ are the solutions.
4. (15 points). We have that $C+D t+(1-E) t=(C+E)+(D-E) t$. Thus we see that E is a free variable: it is not uniquely determined, and in fact can take any value. Given this, just write down the usual least squares equations but treat $C+E$ and $D-E$ as your variables: the matrix A has two columns: the first consists of $n 1$'s, the second is the vector $\left(t_{i}\right)$. Then solve $A^{t} A\binom{C+E}{D-E}=A^{t} b$.
5. a) (15 points). Yes. As A is invertible, it's column space is the full space \mathbb{R}^{n}. The same is true of A^{-1}.
b) (15 points). No. consider $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. It has nonzero column space, but its square is 0 .
