

1)	T 10	2-131	J.Yu	2-348	4-2597	jyu
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa
3)	T 10	2 - 255	Su Ho Oh	2-333	3-7826	suho
4)	T 11	2-131	J. Yu	2-348	4-2597	jyu
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale
6)	T 12	2-132	J. Pascaleff	2-492	3-4093	jpascale
7)	T 12	2-131	K. Jung	2-331	3-5029	kmjung
8)	Τ1	2-131	K. Jung	2-331	3-5029	kmjung
9)	Τ1	2 - 136	V. Sohinger	2-310	4-1231	vedran
10)	Τ1	2-147	M Frankland	2-090	3-6293	franklan
11)	Τ2	2-131	J. French	2-489	3-4086	jfrench
12)	Т2	2-147	M. Frankland	2-090	3-6293	franklan
13)	Τ2	4-159	C. Dodd	2-492	3-4093	cdodd
14)	Τ3	2-131	J. French	2-489	3-4086	jfrench
15)	Т3	4-159	C. Dodd	2-492	3-4093	cdodd

1 (10 pts.) The determinant of the 1000 by 1000 matrix A is 12. What is the determinant of $(-A)^T$? (Careful: No credit for the wrong sign.)

2 (30 pts.)

- (a) P is the projection matrix onto the column space of A which has independent columns.
 Q is a square orthogonal matrix with the same number of rows as A. In simplest form, in terms of P and Q, what is the projection matrix onto the column space of QA?
- (b) The vectors a, b, and c are independent. The matrix P is the projection matrix onto the span of a and b. Suppose we apply Gram-Schmidt onto the vectors a, b, and cproducing orthonormal vectors q_1, q_2 , and q_3 . Write the unit vector q_3 in simplest form in terms of P and c only.
- (c) The vector a, b and c are independent. The matrix A = [a b c] has these three vectors as its columns. The QR decomposition writes A = QR where Q is orthogonal and R is 3 × 3 upper triangular. Write ||c|| in terms of only the elements of R in simplest form.

3 (15 pts.) The vector u is a "unit vector" meaning ||u|| = 1. What are all the possible values of t which guarantee that the matrix $A = I + tuu^T$ is orthogonal?

4 (15 pts.) Suppose we have obtained from measurements n data points (t_i, b_i) , and you are asked to find a best least squares fit function of the form y = C + Dt + E(1 - t). Are C, D, and E uniquely determined? Write down a solvable system of equations that gives a solution to the least squares problem.

- 5 (30 pts.) (a) If A is invertible, must the column space of A^{-1} be the same as the column space of A?
 - (b) If A is square, must the column space of A^2 be the same as the column space of A?