18.06 Professor Edelman Quiz 2 October 22, 2008 $\begin{array}{ll} & \text { Grading } \\ \text { Your PRINTED name is: } & 1 \\ & \begin{array}{l}1 \\ 2 \\ \text { Please circle your recitation: }\end{array} \\ 3 \\ 4 \\ & 5\end{array}$

1)	T 10	2-131	J.Yu	2-348	4-2597	jy
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa
3)	T 10	2-255	Su Ho Oh	2-333	3-7826	suho
4)	T 11	2-131	J. Yu	2-348	4-2597	jyu
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale
6)	T 12	2-132	J. Pascaleff	2-492	3-4093	jpascal
7)	T 12	2-131	K. Jung	2-331	3-5029	kmjung
8)	T 1	2-131	K. Jung	2-331	3-5029	kmjung
9)	T 1	2-136	V. Sohinger	2-310	4-1231	vedran
10)	T 1	2-147	M Frankland	2-090	3-6293	franklan
11)	T 2	2-131	J. French	2-489	3-4086	jfrench
12)	T 2	2-147	M. Frankland	2-090	3-6293	franklan
13)	T 2	4-159	C. Dodd	2-492	3-4093	cdodd
14)	T 3	2-131	J. French	2-489	3-4086	jfrench
15)	T 3	4-159	C. Dodd	2-492	3-4093	cdodd

1 ($\mathbf{1 0}$ pts.) The determinant of the 1000 by 1000 matrix A is 12 . What is the determinant of $(-A)^{T}$? (Careful: No credit for the wrong sign.)

This page intentionally blank.
(a) P is the projection matrix onto the column space of A which has independent columns. Q is a square orthogonal matrix with the same number of rows as A. In simplest form, in terms of P and Q, what is the projection matrix onto the column space of $Q A$?
(b) The vectors a, b, and c are independent. The matrix P is the projection matrix onto the span of a and b. Suppose we apply Gram-Schmidt onto the vectors a, b, and c producing orthonormal vectors q_{1}, q_{2}, and q_{3}. Write the unit vector q_{3} in simplest form in terms of P and c only.
(c) The vector a, b and c are independent. The matrix $A=\left[\begin{array}{ll}a & b c\end{array}\right]$ has these three vectors as its columns. The QR decomposition writes $A=Q R$ where Q is orthogonal and R is 3×3 upper triangular. Write $\|c\|$ in terms of only the elements of R in simplest form.

This page intentionally blank.

3 ($\mathbf{1 5}$ pts.) The vector u is a "unit vector" meaning $\|u\|=1$. What are all the possible values of t which guarantee that the matrix $A=I+t u u^{T}$ is orthogonal?

This page intentionally blank.

4 (15 pts.) Suppose we have obtained from measurements n data points $\left(t_{i}, b_{i}\right)$, and you are asked to find a best least squares fit function of the form $y=$ $C+D t+E(1-t)$. Are C, D, and E uniquely determined? Write down a solvable system of equations that gives a solution to the least squares problem.

This page intentionally blank.

5 ($\mathbf{3 0}$ pts.) (a) If A is invertible, must the column space of A^{-1} be the same as the column space of A ?
(b) If A is square, must the column space of A^{2} be the same as the column space of A ?

This page intentionally blank.

This page intentionally blank.

