

1)	T 10	2-131	J.Yu	2-348	4 - 2597	jyu
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa
3)	T 10	2 - 255	Su Ho Oh	2-333	3-7826	suho
4)	T 11	2-131	J. Yu	2-348	4 - 2597	jyu
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale
6)	Т 12	2-132	J. Pascaleff	2-492	3-4093	jpascale
7)	Т 12	2-131	K. Jung	2-331	3-5029	kmjung
8)	Τ1	2-131	K. Jung	2-331	3-5029	kmjung
9)	Τ1	2-136	V. Sohinger	2-310	4-1231	vedran
10)	Τ1	2-147	M Frankland	2-090	3-6293	franklan
11)	Т2	2-131	J. French	2-489	3-4086	jfrench
12)	Τ2	2-147	M. Frankland	2-090	3-6293	franklan
13)	Τ2	4-159	C. Dodd	2-492	3-4093	cdodd
14)	Τ3	2-131	J. French	2-489	3-4086	jfrench
15)	Τ3	4-159	C. Dodd	2-492	3-4093	cdodd

1 (18 pts.) Consider the equation Ax = b:

$$\begin{bmatrix} 1 & 0 \\ 4 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

- (a) Put the equation into echelon form Rx = d.
- (b) For which b are there solutions?

2 (24 pts.) The matrix A has two special solutions:

$$x_1 = \begin{bmatrix} c \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad x_2 = \begin{bmatrix} d \\ 0 \\ 1 \end{bmatrix}.$$

(a) Describe all the possibilities for the number of columns of A.

- (b) Describe all the possibilities for the number of rows of A.
- (c) Describe all the possibilities for the rank of A.

Briefly explain your answers.

- 3 (30 pts.) Let A be any matrix and R its row reduced echelon form. Answer True or False to the statements below and briefly explain. (Note, if there are any counterexamples to a statement below you must choose false for that statement.)
 - (a) If x is a solution to Ax = b then x must be a solution to Rx = b.
 - (b) If x is a solution to Ax = 0 then x must be a solution to Rx = 0.

4 (28 pts.) A Sudoko puzzle solution such as the example on the last page is a 9x9 matrix A that among other properties has the numbers 1 through 9 once in every row and in every column.

Hint 1: There is no need to compute at all to solve this problem, and familiarty with Sudoko puzzles are unlikely to help or hurt.

Hint 2: 1+2+3+...+9=45.

(a) All such matrices A can be written as

$$A = P_1 + 2P_2 + 3P_3 + \ldots + 8P_8 + 9P_9,$$

where the matrices P_1, \ldots, P_9 are what kind of matrices? (Looking for what we consider the best possible one word answer. Square would be correct, but would not be acceptable.)

(b) Let e be the 9×1 vector of nine 1's. What is the rank of the 9x3 matrix whose columns are e, Ae, and A^Te for any such matrix A. Explain your answer.