Grading

 1Your PRINTED name is:

Please circle your recitation:

1)	T 10	2-131	J.Yu	2-348	4-2597	jyu
2)	T 10	2-132	J. Aristoff	2-492	3-4093	jeffa
3)	T 10	2-255	Su Ho Oh	2-333	3-7826	suho
4)	T 11	2-131	J. Yu	2-348	4-2597	jyu
5)	T 11	2-132	J. Pascaleff	2-492	3-4093	jpascale
6)	T 12	2-132	J. Pascaleff	2-492	3-4093	jpascale
7)	T 12	2-131	K. Jung	2-331	3-5029	kmjung
8)	T 1	2-131	K. Jung	2-331	3-5029	kmjung
9)	T 1	2-136	V. Sohinger	2-310	4-1231	vedran
10)	T 1	2-147	M Frankland	2-090	3-6293	franklan
11)	T 2	2-131	J. French	2-489	3-4086	jfrench
12)	T 2	2-147	M. Frankland	2-090	3-6293	franklan
13)	T 2	4-159	C. Dodd	2-492	3-4093	cdodd
14)	T 3	2-131	J. French	2-489	3-4086	jfrench
15)	T 3	4-159	C. Dodd	2-492	3-4093	cdodd

1 (18 pts.) Consider the equation $A x=b$:

$$
\left[\begin{array}{rr}
1 & 0 \\
4 & 1 \\
2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

(a) Put the equation into echelon form $R x=d$.
(b) For which b are there solutions?

This page intentionally blank.

2 (24 pts.) The matrix A has two special solutions:

$$
x_{1}=\left[\begin{array}{c}
c \\
1 \\
0
\end{array}\right] \quad \text { and } \quad x_{2}=\left[\begin{array}{l}
d \\
0 \\
1
\end{array}\right] .
$$

(a) Describe all the possibilities for the number of columns of A.
(b) Describe all the possibilities for the number of rows of A.
(c) Describe all the possibilities for the rank of A.

Briefly explain your answers.

This page intentionally blank.

3 (30 pts.) Let A be any matrix and R its row reduced echelon form. Answer True or False to the statements below and briefly explain. (Note, if there are any counterexamples to a statement below you must choose false for that statement.)
(a) If x is a solution to $A x=b$ then x must be a solution to $R x=b$.
(b) If x is a solution to $A x=0$ then x must be a solution to $R x=0$.

This page intentionally blank.

4 (28 pts.) A Sudoko puzzle solution such as the example on the last page is a $9 x 9$ matrix A that among other properties has the numbers 1 through 9 once in every row and in every column.

Hint 1: There is no need to compute at all to solve this problem, and familiarty with Sudoko puzzles are unlikely to help or hurt.

Hint 2: $1+2+3+\ldots+9=45$.
(a) All such matrices A can be written as

$$
A=P_{1}+2 P_{2}+3 P_{3}+\ldots+8 P_{8}+9 P_{9}
$$

where the matrices P_{1}, \ldots, P_{9} are what kind of matrices? (Looking for what we consider the best possible one word answer. Square would be correct, but would not be acceptable.)
(b) Let e be the 9×1 vector of nine 1's. What is the rank of the 9 x 3 matrix whose columns are $e, A e$, and $A^{T} e$ for any such matrix A. Explain your answer.

This page intentionally blank.

